Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Eukaryotic activators function during multiple steps of preinitiation complex assembly

Abstract

Eukaryotic activator proteins (activators) stimulate transcription by increasing assembly of the preinitiation complex. We have developed methods to quantify the stable assembly of general transcription factors into transcriptional complexes in response to activators. We show that activators function during at least two stages of preinitiation complex assembly: first, to recruit the general transcription factor TFIIB, and then at a second step, after TFIIB entry. It is at this second step that the TATA-box binding protein associated factors act. This step also seems to be critical for activators to stimulate transcription synergistically.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Zawel, L. & Relnberg, D. Prog. Nucleic Acids Res. molec. Biol. 44, 67–108 (1993).

    Article  CAS  Google Scholar 

  2. Hai, T., Horikoshi, M., Roeder, R. G. & Green, M. R. Cell 54, 1043–1051 (1988).

    Article  CAS  PubMed  Google Scholar 

  3. Carcamo, J., Roeder, R. G. & Kinston, R. E. J. biol. Chem. 264, 7704–7714 (1989).

    CAS  PubMed  Google Scholar 

  4. Workman, J. L., Roeder, R. G. & Kinston, R. E. EMBO J. 9, 1299–1308 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Katagiri, F., Yamazaki, K., Horikoshi, M., Roeder, R. G. & Chua, N. H. Genes Dev. 4, 1899–1909 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Lin, Y.-S. & Green, M. R. Cell 64, 971–981 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, W., Carey, M. & Gralla, D. Science 255, 450–453 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Johnson, F. B. & Krasnow, M. A. Genes Dev. 6, 2177–2189 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Hawley, D. Trends biochem. Sci. 18, 317–318 (1991).

    Article  Google Scholar 

  10. Lin, Y.-S., Carey, M., Ptashne, M. & Green, M. R. Nature 353, 569–571 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Roberts, S. G. E., Ha, I., Maldonado, E., Reinberg, D. & Green, M. R. Nature 363, 741–744 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Stringer, K. F., Ingles, C. J. & Greenblatt, J. Nature 345, 783–786 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Ingles, C. J., Shales, M., Cress, W. D., Triezenberg, S. J. & Greenblatt, J. Nature 351, 588–590 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Pugh, B. F. & Tjian, R. J. biol. Chem. 267, 679–682 (1992).

    CAS  PubMed  Google Scholar 

  15. Sharp, P. A. Cell 68, 819–821 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Hernandez, N. Genes Dev. 7, 1291–1308 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Hahn, S. Nature 363, 672–673 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Giniger, E. & Ptashne, M. Nature 330, 670–672 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Sadowski, I., Ma, J., Triezenberg, S. J. & Ptashne, M. Nature 335, 563–564 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Peterson, M. G. et al. Science 248, 1625–1630 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Tanese, N., Pugh, B. F. & Tjian, R. Genes Dev. 5, 2212–2224 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Carey, M. et al. J. biol. Chem. 261, 4309–4317 (1986).

    CAS  PubMed  Google Scholar 

  23. Arias, J. A. & Dynan, W. S. J. biol. Chem. 264, 3223–3229 (1989).

    CAS  PubMed  Google Scholar 

  24. Ha, H. et al. Genes Dev. 7, 1021–1032 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Ptashne, M. Nature 335, 683–689 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Carey, M. et al. Nature 345, 361–364 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Lin, Y.-S., Ha, I., Maldonado, E., Reinberg, D. & Green, M. R. Nature 345, 359–361 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Lieberman, P. M. & Berk, A. J. Genes Dev. 5, 2441–2454 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Horikoshi, M., Hai, T., Lin, Y. S., Green, M. R. & Roeder, R. G. Cell 54, 665–669 (1988).

    Article  CAS  PubMed  Google Scholar 

  30. Horikoshi, M., Carey, M. F., Kakidani, H. & Roeder, R. G. Cell 54, 1033–1042 (1988).

    Article  CAS  PubMed  Google Scholar 

  31. Sundseth, R. & Hansen, U. J. biol. Chem. 267, 7845–7855 (1992).

    CAS  PubMed  Google Scholar 

  32. Ing, N. H. et al. J. biol. Chem. 267, 17617–17623 (1992).

    CAS  PubMed  Google Scholar 

  33. Colgan, J., Wampler, S. & Manley, J. L. Nature 362, 549–553 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Cress, W. D. & Trienzenberg, S. J. Science 251, 87–90 (1990).

    Article  ADS  Google Scholar 

  35. Wampler, S. L. & Kadonaga, J. T. Genes Dev. 6, 1542–1552 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. White, J. et al. EMBO J. 11, 2229–2240 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hoey, T. et al. Cell 72, 247–260 (1990).

    Article  Google Scholar 

  38. Meisterernst, M., Roy, A. L., Lieu, H. M. & Roeder R. G. Cell 66, 981–993 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. Meisterernst, M. & Roeder, R. G. Cell 67, 557–567 (1991).

    Article  CAS  PubMed  Google Scholar 

  40. Flanagan, P. M. et al. Nature 350, 436–438 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Berger, S. L. et al. Cell. 70, 251–265 (1992).

    Article  CAS  PubMed  Google Scholar 

  42. Zhu, H. & Prywes, R. Proc. natn. Acad. Sci. U.S.A. 89, 5291–5295 (1992).

    Article  ADS  CAS  Google Scholar 

  43. Horikoshi, N. et al. Proc. natn. Acad. Sci. U.S.A. 88, 5124–5128 (1991).

    Article  ADS  CAS  Google Scholar 

  44. Lee, W. S. et al. Cell. 67, 365–376 (1991).

    Article  CAS  PubMed  Google Scholar 

  45. Hagemeier, C. et al. J. Virol. 66, 4452–4456 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Truant, R., Xiao, H., Ingles, C. J. & Greenblatt, J. J. biol. Chem. 268, 2284–2287 (1993).

    CAS  PubMed  Google Scholar 

  47. Kao, C. C. et al. Science 248, 1646–1650 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Flores, O. et al. Proc. natn. Acad. Sci. U.S.A. 88, 9999–10003 (1991).

    Article  ADS  CAS  Google Scholar 

  49. Parvin J. D., Timmers, H. T. & Sharp, P. A. Cell 68, 1135–1144 (1992).

    Article  CAS  PubMed  Google Scholar 

  50. Thompson, N. E., Aronson, D. B. & Burgess, R. R. J. biol. Chem. 265, 7069–7077 (1990).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choy, B., Green, M. Eukaryotic activators function during multiple steps of preinitiation complex assembly. Nature 366, 531–536 (1993). https://doi.org/10.1038/366531a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/366531a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing