Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Imaging high-energy astrophysical sources using Earth occultation

Abstract

HIGH-ENERGY astrophysical sources can be difficult to image. Photons with energies above 5 keV are hard to focus, so experiments usually employ coded masks1–4 or moving collimators5–9 to modulate the flux received by the detectors; the resulting signals are then deconvolved to form the images. Here we demonstrate a new approach which makes use of the large-area, non-collimated detectors of the Burst and Transient Source Experiment on the Compton Gamma-Ray Observatory. As the spacecraft moves in its orbit, the Earth itself acts as a stable occulting disk. Changes in the measured signal during a single occultation correspond to the integrated intensity of sources positioned along the arc described by the Earth's edge (limb). The low-altitude, moderately inclined orbit of the spacecraft ensures that the angle at which the limb traverses a source region varies between occultations, and thus data from a series of occultations can be transformed into an image. This imaging process is conceptually and mathematically similar to those used in fan-beam aperture-synthesis radio-astronomy10 and medical computer-assisted tomography11, and holds great promise for all-sky imaging with relatively simple (and hence inexpensive) detectors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fenimore, E. E. & Cannon, T. M. Appl. Opt. 17, 337–347 (1978).

    Article  ADS  CAS  Google Scholar 

  2. Skinner, G. K. Nucl. Instrum. Meth. 221, 33–40 (1984).

    Article  ADS  Google Scholar 

  3. Kohman, T. P. Rev. Scient. Instrum. 60(11), 3396–3409 (1989).

    Article  ADS  Google Scholar 

  4. Skinner, G. K. Scient. Am. 259(2), 84–89 (August 1988).

    Article  CAS  Google Scholar 

  5. Durouchoux, P., Hudson, H., Hurford, G., Hurley, K., Matteson, J. & Orsal, E. Astr. & Astrophys. 120, 150–155 (1983).

    ADS  Google Scholar 

  6. Mertz, L. N., Nakano, G. H. & Kilner, J. R. J. Opt. Soc. Am. A, 3, 2167–2170 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Caroli, E., Stephen, J. B., DiCocco, G., Natalucci, L. & Spizzichini, G. Space Sci. Rev. 45, 349–403 (1987).

    Article  ADS  Google Scholar 

  8. Willmore, A. P. Mon. Not. R. Astr. Soc. 147, 387–403 (1970).

    Article  ADS  Google Scholar 

  9. Cruise, A. M. Mon. Not. R. Astr. Soc. 170, 305–312 (1975).

    Article  ADS  Google Scholar 

  10. Bracewell, R. N. Aust. J. Phys. 9, 198–217 (1956).

    Article  ADS  MathSciNet  Google Scholar 

  11. Gullberg, G. T. & Tsui, B. M. W. Information Processing in Medical Imaging (eds deGraaf, C. N. & Viergeren, M. A.) 181–189 (Plenum Press, New York, 1989).

    Google Scholar 

  12. Mertz, L. Transformations in Optics (Wiley, New York, 1965).

    Google Scholar 

  13. Mertz, L. in Proc. EUV, X-ray and Gamma Ray Instrumentation for Astronomy and Atomic Physics, SPIE 1159, 14–17 (1989).

    Google Scholar 

  14. Lei, F., Fraser-Mitchell, J. & Yearworth, M. Expl. Astr. 1, 285–303 (1991).

    Article  ADS  Google Scholar 

  15. Fishman, G. J. et al. in Proc. Gamma—Ray Observatory Science Workshop (ed. Johnson, W. N.) 39–50 (NASA/GSFC, Greenbelt, MD, 1989).

    Google Scholar 

  16. Huesman, R. H. et al. Donner Algorithms for Reconstruction Tomography. LBL Publ. 214, 42–44 (University of California, Berkely, 1977).

    Google Scholar 

  17. Deans, S. R. The Radon Transform and Some of Its Applications (Wiley, New York, 1983).

    MATH  Google Scholar 

  18. Harmon, B. A. et al. IAU Circ. No. 5781 (1993).

  19. Harmon, B. A. et al. in AIP Conf. Proc. 280, 314–318 Compton Gamma Ray Observatory (eds Friedlander, M., Gehrels, N. & Macomb, D.) (1993).

    Google Scholar 

  20. Skinner, G. K. et al. Nature 330, 544–547 (1987).

    Article  ADS  Google Scholar 

  21. Claret, A., Goldwurm, A., Cordier, A. & Paul, J. Astrophys. J. (in the press).

  22. Cook, W. R. et al. Astrophys. J. 372, L75–L81 (1991).

    Article  ADS  CAS  Google Scholar 

  23. Sunyaev, R. et al. Astr. Astrophys. 247, L29–L32 (1991).

    ADS  Google Scholar 

  24. Sinner, G. Astr. Astrophys. Suppl. Ser. 97, 149–153 (1993).

    ADS  Google Scholar 

  25. Grindlay, J. E., Covault, C. E. & Manandhar, R. P. Astr. Astrophys. Suppl. Ser. 97, 155–158 (1993).

    ADS  CAS  Google Scholar 

  26. Bazzano, L. et al. Astr. Astrophys. Suppl. Ser. 97, 169–171 (1993).

    ADS  CAS  Google Scholar 

  27. Cordier, B. et al. Astr. Astrophys. Suppl. Ser. 97, 177–180 (1993).

    ADS  CAS  Google Scholar 

  28. Churazov, E. et al. Astr. Astrophys. Suppl. Ser. 97, 173–176 (1993).

    ADS  CAS  Google Scholar 

  29. Paciesas, W. S. et al. in AIP Conf. Proc. 280, 473–477 Compton Gamma Ray Observatory (eds Friedlander, M., Gehrels, N. & Macomb, D.) (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S., Fishman, G., Harmon, B. et al. Imaging high-energy astrophysical sources using Earth occultation. Nature 366, 245–247 (1993). https://doi.org/10.1038/366245a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/366245a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing