Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Multi-ion pore behaviour in the CFTR chloride channel

Abstract

CYSTIC fibrosis transmembrane conductance regulator (CFTR) is a non-rectifying, low-conductance channel1,2 regulated by ATP3 and phosphorylation4, which mediates apical chloride conductance in secretory epithelia5,6 and malfunctions in cystic fibrosis (CF)7,8. Mutations at Lys 335 and Arg 347 in the sixth predicted transmembrane helix of CFTR alter its halide selectivity in whole-cell studies9 and its single channel conductance10, but the physical basis of these alterations is unknown and permeation in CFTR is poorly understood. Here we present evidence that wild-type CFTR can contain more than one anion simultaneously. The conductance of CFTR passes through a minimum when channels are bathed in mixtures of two permeant anions. This anomalous mole fraction effect can be abolished by replacing Arg 347 with an aspartate and can be toggled on or off by varying the pH after the same residue is replaced with a histidine. Thus the CFTR channel should provide a convenient model in which to study multi-ion pore behaviour and conduction. The loss of multiple occupancy may explain how naturally occurring CF mutations at this site cause disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kartner, N. et al. Cell 64, 681–691 (1991).

    Article  CAS  Google Scholar 

  2. Bear, C. E. et al. Cell 68, 809–818 (1992).

    Article  CAS  Google Scholar 

  3. Anderson, M. P. et al. Cell 67, 775–784 (1991).

    Article  CAS  Google Scholar 

  4. Tabcharani, J. A., Chang, X-B., Riordan, J. R. & Hanrahan, J. W. Nature 352, 628–631 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Gray, M. A., Harris, A., Coleman, L., Greenwell, J. R. & Argent, B. E. Am. J. Physiol. 257, C240–C251 (1989).

    Article  CAS  Google Scholar 

  6. Tabcharani, J. A., Low, W., Elie, D. & Hanrahan, J. W. FEBS Lett. 270, 157–164 (1990).

    Article  CAS  Google Scholar 

  7. Rich, D. P. et al. Nature 347, 358–363 (1990).

    Article  ADS  CAS  Google Scholar 

  8. Drumm, M. L. et al. Cell 62, 1227–1233 (1990).

    Article  CAS  Google Scholar 

  9. Anderson, M. P. et al. Science 253, 202–205 (1991).

    Article  ADS  CAS  Google Scholar 

  10. Sheppard, D. N. et al. Nature 362, 160–164 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Woodhull, A. M. J. gen. Physiol. 61, 687–708 (1973).

    Article  CAS  Google Scholar 

  12. Hille, B. Ionic Channels of Excitable Membranes (Sinauer, Sunderland, Mass., 1992).

    Google Scholar 

  13. Almers, W. & McCleskey, E. W. J. Physiol. Lond. 353, 585–608 (1984).

    Article  CAS  Google Scholar 

  14. Hess, P. & Tsien, R. W. Nature 309, 453–456 (1984).

    Article  ADS  CAS  Google Scholar 

  15. Kristidis, P. et al. Am. J. hum. Genet. 50, 1178–1184 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Audrézet, M. P. et al. Hum. molec. Genet. 2, 51–54 (1993).

    Article  Google Scholar 

  17. Cremonesi, L. et al. Hum. Mut. 1, 314–319 (1992).

    Article  CAS  Google Scholar 

  18. Chang, X.-B. et al. J. biol. Chem. 268, 11304–11311 (1993).

    CAS  PubMed  Google Scholar 

  19. Higuchi, R., Krummel, B. & Saiki, R. K. Nucleic Acids Res. 16, 7351–7363 (1988).

    Article  CAS  Google Scholar 

  20. Ho, S. N., Hunt, H. D. & Horton, R. M. Gene 77, 51–59 (1989).

    Article  CAS  Google Scholar 

  21. Tabcharani, J. A., Jensen, T. J., Riordan, J. R. & Hanrahan, J. W. J. membr. Biol. 112, 109–122 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tabcharani, J., Rommens, J., Hou, YX. et al. Multi-ion pore behaviour in the CFTR chloride channel. Nature 366, 79–82 (1993). https://doi.org/10.1038/366079a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/366079a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing