Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Synthesis, structure and activity of artificial, rationally designed catalytic polypeptides

Abstract

BIOLOGICAL macromolecules with catalytic activity can be created artificially using two approaches. The first exploits a system that selects a few catalytically active biomolecules from a large pool of randomly generated (and largely inactive) molecules. Catalytic antibodies1 and many catalytic RNA molecules2 are obtained in this way. The second involves rational design of a biomolecule that folds in solution to present to the substrate an array of catalytic functional groups3–8. Here we report the synthesis of rationally designed polypeptides that catalyse the decarboxylation of oxaloacetate via an imine intermediate. We determine the secondary structures of the polypeptides by two-dimensional NMR spectroscopy. We are able to trap and identify intermediates in the catalytic cycle, and to explore the kinetics in detail. The formation of the imine by our artificial oxaloacetate decarboxylases is three to four orders of magnitude faster than can be achieved with simple amine catalysts: this performance rivals that of typical catalytic antibodies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lerner, R. A., Benkovic, S. J. & Schultz, P. G. Science 252, 659–667 (1991).

    Article  ADS  CAS  Google Scholar 

  2. Bartel, D. P. & Szostak, J. W. Science 261, 1411–1416 (1993).

    Article  ADS  CAS  Google Scholar 

  3. Sheehan, J. C., Bennett, G. B. & Schneider, J. A. J. Am. chem. Soc. 88, 3455–3456 (1966).

    Article  CAS  Google Scholar 

  4. Chakravarty, P. K., Mathur, K. B. & Dhar, M. M. Experientia 29, 786–788 1973).

    Article  CAS  Google Scholar 

  5. Gutte, B., Daeumigen, M. & Wittschieber, E. Nature 281, 650–655 (1979).

    Article  ADS  CAS  Google Scholar 

  6. Langen, H. et al. Eur. J. Biochem. 182, 727–735 (1989).

    Article  CAS  Google Scholar 

  7. Sasaki, T. & Kaiser, E. T. J. Am. chem. Soc 111, 380–381 (1989).

    Article  CAS  Google Scholar 

  8. Hahn, K. W., Klis, W. A. & Stewart, J. Science 248, 1544–1546 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Rozzell, J. D. Jr Meth. Enzym. 136, 479–503 (1987).

    Article  CAS  Google Scholar 

  10. Seltzer, S., Hamilton, G. A. & Westheimer, F. H. J. Am. chem. Soc. 81, 4018–4024 (1959).

    Article  CAS  Google Scholar 

  11. Hay, R. W. Aust, J. Chem. 18, 337–351 (1965).

    Article  CAS  Google Scholar 

  12. Guthrie, J. P. & Jordan, F. J. Am. chem. Soc. 94, 9132–9136 (1972); J. Am. chem. Soc. 94, 9136–9141 (1972).

    Article  CAS  Google Scholar 

  13. Leussing, D. L. & Raghavan, N. V. J. Am. chem. Soc. 102, 5635–5643 (1980).

    Article  CAS  Google Scholar 

  14. Westheimer, F. H. Proc. Robert Welch Fdn Conf. chem. Res. Vol. 15 7–50 (Robert A. Welch Foundation, Houston, 1971).

    Google Scholar 

  15. Rozzell, J. D. Jr & Benner, S. A. J. Am. chem. Soc. 106, 4937–4941 (1984).

    Article  CAS  Google Scholar 

  16. Benner, S. A., Glasfeld, A. & Piccirilli, J. A. Top. Stereochem 127–207 (1989).

  17. Jencks, W. P. Catalysis in Chemistry and Enzymology 587 (McGraw-Hill, New York, 1969).

    Google Scholar 

  18. Johnsson, K. thesis, Eidgenössische Technische Hochschule (1992).

  19. Koehler, K., Sandstrom, W. & Cordes, E. H. J. Am. chem. Soc. 86, 2413–2419 (1964).

    Article  CAS  Google Scholar 

  20. Reimann, J. P. & Jencks, W. P. J. Am. chem. Soc. 88, 3973–3982 (1966).

    Article  CAS  Google Scholar 

  21. Jencks, W. P. Adv. Enzym. 43, 219–410 (1975).

    CAS  Google Scholar 

  22. Hine, J. & Via, F. H. J. Am. chem. Soc. 94, 190–194 (1972).

    Article  CAS  Google Scholar 

  23. Kaiser, E. T. in Redesigning the Molecules of Life (eds Benner, S. A.) 25–28 (Springer, Heidelberg, 1988).

    Book  Google Scholar 

  24. Eisenberg, D. et al. Proteins 1, 16–22 (1986).

    Article  CAS  Google Scholar 

  25. Ho, S. P. & DeGrado, W. F. J. Am. chem. Soc. 109, 6751–6758 (1987).

    Article  CAS  Google Scholar 

  26. Goraj, K., Renard, A., Martial, J. A. Protein Engng 3, 259–266 (1990).

    Article  CAS  Google Scholar 

  27. Ghadiri, M. R., Scares, C. & Choi, C. J. Am. chem. Soc. 114, 825–831 (1992).

    Article  CAS  Google Scholar 

  28. Hill, C. P., Anderson, D. A., Wesson, L., DeGrado, W. F. & Eisenberg, D. Science 249, 543–546 (1990).

    Article  ADS  CAS  Google Scholar 

  29. Allemann, R. K. thesis, Eidgenössische Technische Hochschule (1989).

  30. Wada, A. Adv. Biophys. 9, 1–63 (1976).

    MathSciNet  CAS  Google Scholar 

  31. Hoi, W. G. J., van Duijnen, P. T. & Berendsen, H. J. C. Nature 273, 443–446 (1978).

    Article  ADS  Google Scholar 

  32. Sali, D., Bycroft, M. & Fersht, A. R. Nature 335, 740–743 (1988).

    Article  ADS  CAS  Google Scholar 

  33. Wüthrich, K. NMR of Proteins and Nucleic Acids (Wiley, New York, 1986).

    Book  Google Scholar 

  34. Nelson, J. W. & Kallenbach, N. P. Proteins 1, 211–217 (1986).

    Article  CAS  Google Scholar 

  35. O'Leary, M. & Westheimer, F. H. Biochemistry, 7, 913–919 (1968).

    Article  CAS  Google Scholar 

  36. Kaplan, H., Stephenson, K. J. & Hartley, B. S. Biochem. J. 124, 289–299 (1971).

    Article  CAS  Google Scholar 

  37. Pollack, S. J., Jacobs, J. W. & Schultz, P. G. Science 234, 1570–1573 (1986).

    Article  ADS  CAS  Google Scholar 

  38. Spetnagel, W. J. & Klotz, I. M. J. Am. chem. Soc. 98, 8199–8204 (1976).

    Article  CAS  Google Scholar 

  39. Bruice, P. H. J. Am. chem. Soc. 111, 962–970 (1989).

    Article  CAS  Google Scholar 

  40. Merrifield, R. B. & Barany, G. in The Peptides, Analysis, Synthesis, Biology Vol. 2 (eds Gross, E. & Meienhofer, J.) 3–284 (Academic, New York, 1980).

    Google Scholar 

  41. Johnsson, K., Allemann, R. K. & Benner, S. A. in Molecular Mechanisms in Bioorganic Processes (eds Bleasedale, C. & Golding, B. T.) 166–167 (Royal Society of Chemistry, Cambridge, 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnsson, K., Allemann, R., Widmer, H. et al. Synthesis, structure and activity of artificial, rationally designed catalytic polypeptides. Nature 365, 530–532 (1993). https://doi.org/10.1038/365530a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/365530a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing