Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A new symmetrodont mammal from China and its implications for mammalian evolution

Abstract

A new symmetrodont mammal has been discovered in the Mesozoic era (Late Jurassic or Early Cretaceous period) of Liaoning Province, China. Archaic therian mammals, including symmetrodonts, are extinct relatives of the living marsupial and placental therians. However, these archaic therians have been mostly documented by fragmentary fossils. This new fossil taxon, represented by a nearly complete postcranial skeleton and a partial skull with dentition, is the best-preserved symmetrodont mammal yet discovered. It provides a new insight into the relationships of the major lineages of mammals and the evolution of the mammalian skeleton. Our analysis suggests that this new taxon represents a part of the early therian radiation before the divergence of living marsupials and placentals; that therians and multituberculates are more closely related to each other than either group is to other mammalian lineages; that archaic therians lacked the more parasagittal posture of the forelimb of most living therian mammals; and that archaic therians, such as symmetrodonts, retained the primitive feature of a finger-like promontorium (possibly with a straight cochlea) of the non-therian mammals. The fully coiled cochlea evolved later in more derived therian mammals, and is therefore convergent to the partially coiled cochlea of monotremes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Zhangheotherium quinquecuspidens (IVPP V7466, holotype).
Figure 2: Dentition and mandible of Zhangheotherium quinquecuspidens.
Figure 3: Reconstruction of the partial basicranium of Zhangheotherium quiquecuspidens (IVPP V7466).
Figure 4: Comparison of the sternal apparatus and pectoral girdle of Zhangheotherium and living mammals.
Figure 5: Phylogenetic relationships of Zhangheotherium quinquecuspidens.

Similar content being viewed by others

References

  1. Wang, Y.-Q., Hu, Y.-M., Zhou, M.-Z. & Li, C.-K. in Sixth Symposium on Mesozoic Terrestrial Ecosystems and Biota, Short Papers (eds Sun, A.-L & Wang, Y.-Q.) 221–227 (China Ocean Press, Beijing, (1995)).

    Google Scholar 

  2. Chen, P.-J. et al. Studies on the Late Mesozoic continental formations of western Liaoning. Bull. Nanjing Inst. Geol. Palaeontol. Acad. Sin. 1, 22–55 (1980). (In Chinese.)

    ADS  CAS  Google Scholar 

  3. Chen, P.-J. & Chang, Z.-L. Nonmarine Cretaceous stratigraphy in eastern China. Cretaceous Res. 15, 245–257 (1994).

    Article  Google Scholar 

  4. Jin, F. New advances in the Late Mesozoic stratigraphic research of Western Liaoning, China. Vert. PalAsiat. 34, 102–122 (1996).

    Google Scholar 

  5. Hou, L.-H., Zhou, Z.-H., Martin, L. D. & Feduccia, A. Abeaked bird from the Jurassic of China. Nature 377, 616–618 (1995).

    Article  ADS  Google Scholar 

  6. Hou, L.-H., Martin, L. D., Zhou, Z.-H. & Feduccia, A. Early adaptive radiation of birds: evidence from fossils from Northeastern China. Science 274, 1164–1165 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Ji, Q. & Ji, S.-A. Protarchaeopteryx, a new genus of Archaeopteridae of China. Chin. Geol. 1997 (3), 38–41 (1997). (In Chinese.)

    Google Scholar 

  8. Ji, Q. & Ji, S.-A. Discovery of the earliest bird fossils in China and the origin of birds. Chin. Geol. 1996 (10), 30–33 (1996). (In Chinese.)

    Google Scholar 

  9. Smith, P. E. et al. Date and rates in ancient lakes: 40Ar–39Ar Evidence for an early Cretaceous age for the Jehol group, Northeast China. Can. J. Earth Sci. 32, 1426–1431 (1995).

    Article  ADS  Google Scholar 

  10. Simpson, G. G. A Catalogue of the Mesozoic Mammalia in the Geological Department of the British Museum (Oxford Univ. Press, London, (1928)).

    Google Scholar 

  11. Clemens, W. A. Late Jurassic mammalian fossils in the Sedgwick Museum, Cambridge. Palaeontology 6, 373–377 (1963).

    Google Scholar 

  12. Cassiliano, M. L. & Clemens, W. A. J in Mesozoic Mammals: the First Two-thirds of Mammalian History (eds Lillegraven, J. A., Kielan-Jaworowska, Z. & Clemens, W. A.) 150–161 (Univ. California Press, Berkeley, (1979)).

    Google Scholar 

  13. Jenkins, F. A. J & Parrington, F. R. Postcranial skeleton of the Triassic mammals Eozostrodon, Megazostrodon, and Erythrotherium. Phil. Trans. R. Soc. Lond. B 273, 387–431 (1976).

    Article  ADS  Google Scholar 

  14. Krause, D. W. & Jenkins, F. A. J The postcranial skeleton of North American multituberculates. Bull. Mus. Comp. Zool. 150, 199–246 (1983).

    Google Scholar 

  15. Jenkins, F. A. J & Schaff, C. R. The Early Cretaceous mammal Gobiconodon (Mammalia Triconodonta) from the Cloverly Formation in Montana. J. Vert. Paleontol. 6, 1–24 (1988).

    Article  Google Scholar 

  16. Krebs, B. Das Skelett von Henkelotherium guimarotae gen. et sp. nov. (Eupantotheria Mammalia) aus dem Oberen Jura von Portugal. Berlin. Geowiss. Abh. A 133, 1–110 (1991).

    Google Scholar 

  17. Rougier, G. W. Vincelestes neuquenianus Bonaparte (Mammalia, Theria), un primitivo mammifero del Cretacico Inferior de la Cuenca Neuqina. Thesis, Univ. Nacional de Buenos Aires (1993).

  18. Sereno, P. & McKenna, M. C. Cretaceous multituberculate skeleton and the early evolution of the mammalian shoulder girdle. Nature 377, 144–147 (1995).

    Article  ADS  CAS  Google Scholar 

  19. Fox, R. C. Upper molar structure in the Late Cretaceous symmetrodont Symmetrodontoides Fox, and a classification of the Symmetrodonta (Mammalia). J. Paleontol. 59, 21–26 (1985).

    Google Scholar 

  20. Cifelli, R. Cretaceous mammals of southern Utah. III. Therian mammals from the Turonian (Early Late Cretaceous). J. Vert. Paleontol. 10, 332–345 (1990).

    Article  Google Scholar 

  21. Kermack, K. A., Mussett, F. & Rigney, H. W. The skull of Morganucodon. Zool. J. Linn. Soc. 71, 1–158 (1981).

    Article  Google Scholar 

  22. Crompton, A. W. & Luo, Z. in Mammal Phylogeny (eds Szalay, F. S., Novacek, M. J. & McKenna, M. C.) 30–44 (Springer, New York, (1993)).

    Book  Google Scholar 

  23. Rougier, G. W., Wible, J. R. & Hopson, J. A. Reconstruction of the cranial vessels in the Early Cretaceous mammal Vincelestes neuquenianus: implications for the evolution of the mammalian cranial vascular system. J. Vert. Paleontol. 12, 188–216 (1992).

    Article  Google Scholar 

  24. Marshall, L. G. & Muizon, C. d in Pucadelphys andinus (Marsupialia, Mammalia) from the early Paleocene of Bolivia (ed. Muizon, C. de) Mém. Mus. Natl Hist. Nat. Paris 165, 21–90 (1995).

    Google Scholar 

  25. Luo, Z. & Crompton, A. W. Transformations of the quadrate (incus) through the transition from non-mammalian cynodonts to mammals. J. Vert. Paleontol. 14, 341–374 (1994).

    Article  Google Scholar 

  26. Rougier, G. W., Wible, J. R. & Hopson, J. A. Basicranial anatomy of Priacodon fruitaensis (Triconodontidae, Mammalia) from the Late Jurassic of Colorado, and a reappraisal of mammaliaform interrelationships. Am. Mus. Novit. 3183, 1–28 (1996).

    Google Scholar 

  27. Rowe, T. 1988. Definition, diagnosis, and origin of Mammalia. J. Vert. Paleontol. 8, 241–264 (1988).

    Article  Google Scholar 

  28. Zeller, U. Die Entwicklung und Morphologie des Schädels von Ornithorhynchus anatinus (Mammalia: Prototheria: Monotremata). Abh. Senckenb. Naturf. Gesel. 545, 1–188 (1989).

    Google Scholar 

  29. Wible, J. R. Origin of Mammalia: the craniodental evidence reexamined. J. Vert. Paleontol. 11, 1–28 (1991).

    Article  Google Scholar 

  30. Luo, Z., Crompton, A. W. & Lucas, S. G. Evolutionary origins of the mammalian promontorium and cochlea. J. Vert. Paleontol. 15, 113–121 (1995).

    Article  Google Scholar 

  31. Graybeal, A., Rosowski, J., Ketten, D. R. & Crompton, A. W. Inner ear structure in Morganucodon, an early Jurassic mammal. Zool. J. Linn. Soc. 96, 107–117 (1989).

    Article  Google Scholar 

  32. Kielan-Jaworowska, Z., Presley, R. & Poplin, C. The cranial vascular system in taeniolabidoid multituberculate mammals. Phil. Trans. R. Soc. Lond. B 313, 525–602 (1986).

    Article  ADS  Google Scholar 

  33. Luo, Z. & Ketten, D. R. CT scanning and computerized reconstructions of the inner ear structure of multituberculate mammals. J. Vert. Paleontol. 11, 220–228 (1991).

    Article  Google Scholar 

  34. Meng, J. & Wyss, A. Monotreme affinities and low-frequency hearing suggested by multituberculate ear. Nature 377, 141–144 (1995).

    Article  ADS  CAS  Google Scholar 

  35. Lillegraven, J. A. & Krusat, G. Cranio-mandibular anatomy of Haldanodon exspectatus (Docondontia; Mammalia) from the Late Jurassic of Portugal and its implications to the evolution of mammalian characters. Contrib. Geol. 28, 39–138 (1991).

    Google Scholar 

  36. Meng, J. & Fox, R. C. Therian petrosals from the Oldman and Milk River Formations (Late Cretaceous), Alberta, Canada. J. Vert. Paleontol. 15, 122–130 (1995).

    Article  Google Scholar 

  37. Wible, J. R. & Hopson, J. A. in Mammal Phylogeny Vol. 1(eds Szalay, F. S., Novacek, M. J. & McKenna, M. C.) 45–62 (Springer, New York, (1993)).

    Book  Google Scholar 

  38. Kielan-Jaworowska, Z. & Gambaryan, P. P. Postcranial anatomy and habits of Asian multituberculate mammals. Fossils & Strata 36, 1–92 (1994).

    Google Scholar 

  39. Jenkins, F. A. J The movement of the shoulder in claviculate and aclaviculate mammals. J. Morphol. 144, 71–84 (1974).

    Article  Google Scholar 

  40. Jenkins, F. A. J & Weijs, W. A. The functional anatomy of the shoulder in the Virginia opossum (Didelphis virginiana). J. Zool. 188, 379–410 (1979).

    Article  Google Scholar 

  41. Jenkins, F. A. J The functional anatomy and evolution of the mammalian humero-ulnar joint. Am. J. Anat. 137, 281–298 (1973).

    Article  Google Scholar 

  42. Gambaryan, P. P. & Kielan-Jaworowska, Z. Sprawling versus parasagittal stance in multituberculate mammals. Acta Palaeontol. Pol. 42, 13–44 (1997).

    Google Scholar 

  43. Hopson, J. A. in Major Features of Vertebrate Evolution (eds Prothero, D. R. & Schoch, R. M.) 190–219 (Paleontological Society Short Courses, Knoxville, TN, (1994)).

    Google Scholar 

  44. Kielan-Jaworowska, Z., Crompton, A. W. & Jenkins, F. A. J The origin of egg-lying mammals. Nature 326, 871–873 (1987).

    Article  ADS  Google Scholar 

  45. Crompton, A. W. in Early Mammals (eds Kermack, D. M. & Kermack, K. A.) 65–87 (Academic, London, (1971)).

    Google Scholar 

  46. Crompton, A. W. & Jenkins, F. A. J in Mesozoic Mammals: the First Two-thirds of Mammalian History (eds Lillegraven, J. A., Kielan-Jaworowska, Z. & Clemens, W. A.) 59–72 (Univ. California Press, Berkeley, (1979)).

    Google Scholar 

  47. Kemp, T. S. The relationships of mammals. Zool. J. Linn. Soc. 77, 353–384 (1983).

    Article  Google Scholar 

  48. Rowe, T. in Mammal Phylogeny Vol. 1(eds Szalay, F. S., Novacek, M. J. & McKenna, M. C.) 129–145 (Springer, New York, (1993)).

    Book  Google Scholar 

  49. Klima, M. Die Frühentwicklung des Schültergürtels und des Brustbeins bei den Monotremen (Mammalia: Prototheria). Adv. Anat. Embryol. Cell Biol. 47, 1–80 (1973).

    Google Scholar 

  50. Klima, M. Early development of the shoulder girdle and sternum in marsupials (Mammalia: Metatheria). Adv. Anat. Embryol. Cell Biol. 109, 1–91 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. C. Beard, M. Dawson, R. Fox, Z. Kielan-Jaworowska, B. Krebs, T.Martin, J. Meng, R. Presley, G. Rougier, P. Sereno, A. Sun and J. Wible for suggestions on the manuscript; L.-H. Hou for field assistance; G.-H. Cui for photography; and H. Zhang for preparation. Research was supported by National Natural Science Foundation of China (to C.L.), the Rea Postdoctoral Fellowship of Carnegie Museum (to Y. W.), National Science Foundation of USA, National Geographic Society, and the M.Graham Netting Fund of Carnegie Museum (to Z.L.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhexi Luo or Chuankui Li.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Y., Wang, Y., Luo, Z. et al. A new symmetrodont mammal from China and its implications for mammalian evolution. Nature 390, 137–142 (1997). https://doi.org/10.1038/36505

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/36505

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing