Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Myogenin gene disruption results in perinatal lethality because of severe muscle defect

Abstract

MYOGENIN is a member of the basic helix-loop-helix (bHLH) gene family and converts multipotential mesodermal cells to myoblasts1–4. The four members of the myoD family show unique spatio-temporal expression patterns5 and therefore may have different functions during myogenesis. Here we inactivate the myogenin gene in order to understand its role in myogenesis. Homozygous mutations are lethal perinatally owing to the resulting major defects in skeletal muscle. The extent of disorganization of muscle tissue differs in three regions. In the latero-ventral body wall, most cells, including myogenic cells, disappear and there is rapid accretion of fluid. In the limbs, cells of the myogenic lineage exist, but they are severely disrupted, and some of them are mono-nucleate with properties of myoblasts. In contrast, there are many axial, intercostal and back muscle fibres to be seen, although fibres are mainly disorganized and Z-lines are not present in most myofibrils. These findings are evidence that myogenin is crucial for muscle development in utero and demonstrate that other members of the myogenic gene family cannot compensate for the defect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Davis, R. L., Weintraub, H. & Lassar, A. B. Cell 51, 987–1000 (1987).

    Article  CAS  Google Scholar 

  2. Wright, W. E., Sassoon, D. A. & Lin, V. K. Cell 56, 607–617 (1989).

    Article  CAS  Google Scholar 

  3. Braun, T., Buschhausen, D. G., Bober, E., Tannich, E., & Arnold, H. H. EMBO J. 8, 701–709 (1989).

    Article  CAS  Google Scholar 

  4. Rhodes, S. J. & Konieczny, S. F. Genes Dev. 3, 2050–2061 (1989).

    Article  CAS  Google Scholar 

  5. Lyons, G. E. & Buckingham, M. E. Sem. dev. Biol. 3, 243–253 (1992).

    Google Scholar 

  6. Mansour, S. L., Thomas, K. R. & Capecchi, M. R. Nature 336, 348–352 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Weintraub, H. et al. Science 251, 761–766 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Sassoon, D. et al. Nature 341, 303–307 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Miller, J. B. Neuromusc. Dis. 1, 7–17 (1991).

    Article  CAS  Google Scholar 

  10. Ordahl, C. P. & Le Douarin, N. M. Development 114, 339–353 (1992).

    CAS  PubMed  Google Scholar 

  11. Ede, D. & El-Gadi, A. in Somites in Developing Embryos (eds Ballairs, R. D. & Lassh, J.) 209–224 (Plenum, New York, 1986).

    Book  Google Scholar 

  12. Milaire, J. Archs Biol. 87, 315–343 (1976).

    CAS  Google Scholar 

  13. Keynes, R. & Stern, C. Development 103, 413–429 (1988).

    CAS  PubMed  Google Scholar 

  14. Cusella-De Angelis, M. et al. J. Cell Biol. 116, 1243–1255 (1992).

    Article  CAS  Google Scholar 

  15. Olsen, E. N. Devl Biol. 154, 261–272 (1992).

    Article  Google Scholar 

  16. Li, L. et al. Cell 71, 1181–1194 (1992).

    Article  CAS  Google Scholar 

  17. Tapscott, S. J. et al. Science 242, 405–411 (1988).

    Article  ADS  CAS  Google Scholar 

  18. Brennan, T. J., Edmondson, D. G., Li, L. & Olson, E. N. Proc. natn. Acad. Sci. U.S.A. 88, 3822–3826 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Rudnicki, M. A., Braun, T., Hinuma, S. & Jaenisch R. Cell 71, 383–390 (1992).

    Article  CAS  Google Scholar 

  20. Braun, T., Rudnicki, M. A., Arnold, H. H. & Jaenisch, R. Cell 71, 369–382 (1992).

    Article  CAS  Google Scholar 

  21. Katoh, K., Takahashi, Y., Hayashi, S. & Kondoh, H. Cell Struct. Funct. 12, 575–580 (1987).

    Article  CAS  Google Scholar 

  22. Handyside, A. H., O'Neill, G. T., Jones, M. & Hooper, M. L. Roux's Arch. Dev. Biol. 198, 48–55 (1989).

    Article  Google Scholar 

  23. Sawai, S., Shimono, A., Hanaoka, K. & Kondoh, H. New Biol. 3, 861–869 (1991).

    CAS  PubMed  Google Scholar 

  24. Abe, H., Komiya, T. & Obinata, T. Devl Biol. 118, 42–51 (1989).

    Article  Google Scholar 

  25. Fujisawa-Sehara, A. et al. J. biol. Chem. 267, 10031–10038 (1992).

    CAS  PubMed  Google Scholar 

  26. Kim, D. W., Uetsuki, T., Kaziro, Y., Yamaguchi, N. & Sugano, S. Gene 9, 217–223 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nabeshima, Y., Hanaoka, K., Hayasaka, M. et al. Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature 364, 532–535 (1993). https://doi.org/10.1038/364532a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/364532a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing