Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Femtosecond dynamics of dissociation and recombination in solvent cages

Abstract

FOR chemical reactions in solution, the solvent exerts an important influence on the elementary processes of bond making and breaking. The solvent may, for example, enhance bond formation by trapping reactive species in a 'solvent cage' on the reaction timescale1, or it may act as a 'chaperone' that stabilizes energetic species2. Ultrafast reaction dynamics in solvent shells can be probed using laser spectroscopic techniques developed to resolve atomic motion on the femtosecond (fs) timescale3. Here we report on a study of the femtosecond dynamics of the dissociation of neutral iodine molecules encaged in clusters of around 40–150 argon atoms, which form a solvent shell4–6. We find that, when dissociation occurs from the A-type excited electronic state of I2, the iodine atoms exhibit coherent motion on a sub-picosecond (<10−12s) timescale, rebounding from the 'frozen' solvent cage and recombining. The 'hot' I2 molecule is then cooled over by collisions with the argon atoms. We provide support for these interpretations using molecular-dynamics simulations. Dissociation from the B state, meanwhile, involves slower bond-breaking and slower recombination of the fragments—there is no coherent 'rebound' from the solvent cage. The dissociation pathway therefore depends critically on the timescale of bond breaking relative to that of solvent rearrangement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Frank, J. & Rabinovitch, E. Trans. Faraday Soc. 30, 120–131 (1934).

    Article  Google Scholar 

  2. Porter, G. & Smith, J. A. Proceedings Royal Soc. A 261, 28–37 (1961).

    CAS  Google Scholar 

  3. Zewail, A. H. Faraday Discuss. Chem. Soc. 91, 207–237 (1991).

    Article  CAS  Google Scholar 

  4. Saenger, K. L., McClelland, G. M. & Herschbach, D. R. J. phys. Chem. 85, 3333–3337 (1981).

    Article  CAS  Google Scholar 

  5. Jortner, J., Scharf, D., Ben-Horin, N., Evan, U. & Landman, U. in Proc. int. School of Physics (ed. Scholes, G.) 43–98 (North-Holland, Amsterdam, 1990).

    Google Scholar 

  6. Berry, R. S. in Proc. int. School of Physics (ed. Scholes, G.) 3–22 (North-Holland, Amsterdam, 1990).

    Google Scholar 

  7. Papanikolas, J. M. et al. J. phys. Chem. 95, 8028–8040 (1991).

    Article  CAS  Google Scholar 

  8. Breen, J. J. et al. J. chem. Phys. 92, 805–807 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Gutmann, M., Willberg, D. M. & Zewail, A. H. J. chem. Phys. 97, 8048–8059 (1992).

    Article  ADS  CAS  Google Scholar 

  10. Potter, E. D., Liu, Q. & Zewail, A. H. Chem. Phys. Lett. 200, 605–614 (1992).

    Article  ADS  CAS  Google Scholar 

  11. Papanikolas, J. M. et al. J. chem. Phys. 97, 7002–7005 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Baumert, T., Engel, V., Meier, C. & Gerber, G. Chem. Phys. Lett. 200, 488–494 (1992).

    Article  ADS  CAS  Google Scholar 

  13. Wei, S., Purnell, J., Buzza, S. A., Stanley, R. J. & Castleman, A. W. Jr J. chem. Phys. 97, 9480–9482 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Schreiber, E., Kühling, H., Kobs, K., Rutz, S. & Wöste, L. Ber. Bunsenges. phys. Chem. 96, 1301–1305 (1992).

    Article  CAS  Google Scholar 

  15. Amar, F. G. & Berne, B. J. J. phys. Chem. 88, 6720–6727 (1984).

    Article  CAS  Google Scholar 

  16. Alimi, R., Gerber, R. B., McCaffray, J. G., Huntz, H. & Schwentner, N. Phys. Rev. Lett. 69, 856–859 (1992).

    Article  ADS  CAS  Google Scholar 

  17. Stace, A. J. J. Chem. Soc. Farad. Trans. II 77, 2105–2110 (1981).

    Article  CAS  Google Scholar 

  18. Fei, S., Zheng, X., Heaven, M. & Tellinghuisen, J. J. chem. Phys. 97, 6057–6063 (1992).

    Article  ADS  CAS  Google Scholar 

  19. Valentini, J. J. & Cross, J. B. J. chem. Phys. 77, 572–573 (1982).

    Article  ADS  CAS  Google Scholar 

  20. Beswick, J. A., Monot, R., Phillippoz, J.-M. & van den Bergh, H. J. chem. Phys. 86, 3965–3967 (1987).

    Article  ADS  CAS  Google Scholar 

  21. Burke, M. L. & Klemperer, W. J. chem. Phys. 98, 1797–1809 (1993).

    Article  ADS  CAS  Google Scholar 

  22. Schroeder, J. & Troe, J. A. Rev. phys. Chem. 38, 163–190 (1987).

    Article  ADS  CAS  Google Scholar 

  23. Harris, A. L., Brown, J. K. & Harris, C. B. A. Rev. phys. Chem. 39, 341–366 (1988).

    Article  ADS  CAS  Google Scholar 

  24. Scherer, N. F., Ziegler, L. D. & Fleming, G. R. J. chem. Phys. 96, 5544–5547 (1992).

    Article  ADS  CAS  Google Scholar 

  25. Dardi, P. S. & Dahler, J. S. J. chem. Phys. 98, 363–372 (1993).

    Article  ADS  CAS  Google Scholar 

  26. Bowman, R. M., Dantus, M. & Zewail, A. H. Chem. Phys. Lett. 161, 297–302 (1989).

    Article  ADS  CAS  Google Scholar 

  27. Gruebele, M. & Zewail, A. H. J. chem. Phys. 98, 883–902 (1993).

    Article  ADS  CAS  Google Scholar 

  28. Farges, J., de Ferandy, M. F., Raoult, B. & Torchet, G. J. chem. Phys. 84, 3491–3501 (1986).

    Article  ADS  CAS  Google Scholar 

  29. Tellinghuisen, J. J. chem. Phys. 58, 2821–2834 (1973).

    Article  ADS  Google Scholar 

  30. Nesbit, D. J. & Hynes, J. T. J. chem. Phys. 77, 2130–2143 (1982).

    Article  ADS  Google Scholar 

  31. Joly, A. G., Ruhman, S., Kohler, B. & Nelson, K. A. Springer Ser. chem. Phys. 48, 506–510 (1988).

    Article  CAS  Google Scholar 

  32. Benjamin, I., Banin, U. & Ruhman, S. J. chem. Phys. 98, 8337–8340 (1993).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Q., Wang, JK. & Zewail, A. Femtosecond dynamics of dissociation and recombination in solvent cages. Nature 364, 427–430 (1993). https://doi.org/10.1038/364427a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/364427a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing