Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct interaction of Ras and the amino-terminal region of Raf-1 in vitro

Abstract

THE Ras proteins are key regulators of the growth of eukaryotic cells, but their direct target enzymes, or 'effectors', are unknown1. The protein encoded by the c-raf-1 proto-oncogene is thought to function downstream of p21ras because disruption of Raf blocks signalling by Ras in a number of systems2–5. Here we report that the amino-terminal cysteine-rich regulatory region of p74c-raf-1 expressed as a glutathione-S-transferase (GST) fusion protein binds directly to Ras with relatively high affinity (50 nM). The binding is strictly dependent on the Ras protein being in the active GTP-bound conformation rather than the inactive GDP-bound state. Raf–GST interacts with wild-type and oncogenic Ras (Val 12) but fails to interact with a biologically inert effector mutant of Ras (Ala 38) and a dominant negative mutant (Asn 17). A peptide based on the effector region of Ras inhibits the interaction. Raf–GST acts as a potent competitive inhibitor of the GTPase-activating proteins p120GAPand neurofibromin. In addition, Raf itself displays weak GTPase-stimulating activity towards Ras. It is therefore likely that Raf is a direct effector of Ras.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Marshall, C. J. Trends Genet. 7, 91–94 (1991).

    Article  CAS  Google Scholar 

  2. Kolch, W., Heidecker, G., Lloyd, P. & Rapp, U. R. Nature 349, 426–428 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Bruder, J. T., Heidecker, G. & Rapp, U. R. Genes Dev. 6, 545–556 (1992).

    Article  CAS  Google Scholar 

  4. Han, M., Golden, A., Han, Y. & Sternberg, P. W. Nature 363, 133–140 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Dickson, B., Sprenger, F., Morrison, D. & Hafen, E. Nature 360, 600–603 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Rapp, U. R. et al. Cold Spring Harb. Symp. quant. Biol. 53, 173–184 (1988).

    Article  CAS  Google Scholar 

  7. Ono, Y. et al. Proc. natn. Acad. Sci. U.S.A. 86, 3099–3103 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Farnsworth, C. L. & Feig, L. A. Molec. cell. Biol. 11, 4822–4829 (1991).

    Article  CAS  Google Scholar 

  9. Martin, G. A. et al. Cell 63, 843–849 (1990).

    Article  CAS  Google Scholar 

  10. Schaber, M. D. et al. Proteins Struct. Funct. Genet. 6, 306–315 (1989).

    Article  CAS  Google Scholar 

  11. Farnsworth, C. L., Marshall, M. S., Gibbs, J. B., Stacey, D. W. & Feig, L. A. Cell 64, 625–633 (1991).

    Article  CAS  Google Scholar 

  12. Mulcahy, L. S., Smith, M. R. & Stacey, D. W. Nature 313, 241–243 (1985).

    Article  ADS  CAS  Google Scholar 

  13. Ahmed, S. et al. Biochem. J. 280, 233–241 (1991).

    Article  CAS  Google Scholar 

  14. Downward, J. Bioessays 14, 177–184 (1992).

    Article  CAS  Google Scholar 

  15. Bourne, H. R. & Stryer, L. Nature 358, 541–543 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Ahn, N. G., Seger, R. & Krebs, E. G. Curr. Opin. Cell Biol. 4, 992–999 (1992).

    Article  CAS  Google Scholar 

  17. Hall, A. Science 249, 635–640 (1990).

    Article  ADS  CAS  Google Scholar 

  18. Downward, J., Graves, J. D., Warne, P. H., Rayter, S. & Cantrell, D. A. Nature 346, 719–723 (1990).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warne, P., Vician, P. & Downward, J. Direct interaction of Ras and the amino-terminal region of Raf-1 in vitro. Nature 364, 352–355 (1993). https://doi.org/10.1038/364352a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/364352a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing