Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Voltage-dependent potentiation of L-type Ca2+ channels due to phosphorylation by cAMP-dependent protein kinase

Abstract

THE force of contraction of motor units in skeletal muscle is graded by changing the discharge rate of motor neurons1, and cytosolic calcium transients are similarly increased2. During single twitches, contraction is not dependent on extracellular calcium3, and L-type Ca2+ channels may only function as voltage sensors for initiating Ca2+ release from the sarcoplasmic reticulum4–6. In contrast, forceful tetanic contractions triggered by action potentials at high frequency (20 to 200 Hz) are dependent on extracellular Ca2+ concentration and sensitive to L-type Ca2+ channel antagonists7–9, but the mechanism of regulation of contractile force is unknown. Here we report a large, voltage- and frequency-dependent potentiation of skeletal muscle L-type Ca2+ currents by trains of high-frequency depolarizing prepulses, which is caused by a shift in the voltage-dependence of channel activation to more negative membrane potentials and requires phosphorylation by cyclic AMP-dependent protein kinase in a voltage-dependent manner. This potentiation would substantially increase Ca2+ influx and contractile force in skeletal muscle fibres in response to tetanic stimuli.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kernell, D., Eerbeek, O & Verhey, B. A. Expl Brain Res. 50, 220–227 (1983).

    CAS  Google Scholar 

  2. Miledi, R., Parker, I. & Zhu, P. H. J. Physiol. Lond. 333, 655–679 (1982)

    Article  CAS  Google Scholar 

  3. Armstrong, C. M., Bezanilla, F. M. & Horowitz, P. Biochim. biophys. Acta 267, 605–608 (1972).

    Article  CAS  Google Scholar 

  4. Adams, B. & Beam, K. FASEB J. 4, 2809–2816 (1990).

    Article  CAS  Google Scholar 

  5. Rios, E. & Pizarro, G. Physiol. Rev. 71, 849–908 (1991).

    Article  CAS  Google Scholar 

  6. Catterall, W. A. Cell 64, 871–874 (1991).

    Article  CAS  Google Scholar 

  7. Kotsias, B. A., Muchnik, S. & Paz, C. A. O. Am. J. Physiol 250, C40–C46 (1986).

    Article  CAS  Google Scholar 

  8. Dulhunty, A. F & Gage, P. W. J. Physiol. Lond. 399, 63–80 (1988)

    Article  CAS  Google Scholar 

  9. Oz, M. & Frank, G. B. J. Pharmac. exp. Ther. 257, 575–581 (1991).

    CAS  Google Scholar 

  10. Arreola, J., Calvo, J., Garcia, M. C. & Sanchez, J. A. J. Physiol., Lond. 393, 307–330 (1987).

    Article  CAS  Google Scholar 

  11. Cheng, H.-C., Van Patten, S. M., Smith, A. J. & Walsh, D. A. Biochem J. 231, 655–671 (1985).

    Article  CAS  Google Scholar 

  12. Lee, K. S. Proc. natn. Acad. Sci. U.S.A. 84, 3941–3945 (1987).

    Article  ADS  CAS  Google Scholar 

  13. Fedida, D., Noble, D. & Spindler, A. J. J. Physiol., Lond. 405, 439–460 (1988).

    Article  CAS  Google Scholar 

  14. Pietrobon, D. & Hess, P. Nature 346, 651–655 (1990).

    Article  ADS  CAS  Google Scholar 

  15. Artalejo, C. R., Rossie, S., Perlman, R. L. & Fox, A. P. Nature 358, 63–66 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Feldmeyer, D., Melzer, W., Pohl, B. & Zollner, P. J. Physiol. Lond. 425, 347–367 (1990).

    Article  CAS  Google Scholar 

  17. Garcia, J., Avila-Sakar, A. J. & Stefani, E. Pflügers Arch. 416, 210–212 (1990).

    Article  CAS  Google Scholar 

  18. Schwartz, L., McCleskey, E. W. & Almers, W. Nature 314, 747–751 (1985).

    Article  ADS  CAS  Google Scholar 

  19. Lawrence, J. C. & Catterall, W. A. J. biol. Chem. 256, 6223–6229 (1981).

    CAS  PubMed  Google Scholar 

  20. Hamill, O.P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pflügers Arch. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  21. House, C. & Kemp, B. E. Science 238, 1726–1728 (1987).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sculptoreanu, A., Scheuer, T. & Catterall, W. Voltage-dependent potentiation of L-type Ca2+ channels due to phosphorylation by cAMP-dependent protein kinase. Nature 364, 240–243 (1993). https://doi.org/10.1038/364240a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/364240a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing