Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Understanding the acid behaviour of zeolites from theory and experiment

Abstract

ZEOLITES are microporous aluminosilicates which, in their protonated form, act as solid catalysts1, and are widely used in the oil and petrochemical industries for processes such as cracking, isomerization and alkylation if hydrocarbons2. The proposed mechanisms3–5 of these processes mostly involve proton transfer and formation of carbenium or carbonium ions as reactive intermediates, but the detailed function of the zeolite and in particular the relation between acidity and catalytic activity is not well understood. Here we report experimental and theoretical studies of denterium–hydrogen exchange between deuterated methane and protonated zeolites — a prototypical hetero-geneous catalytic reaction between a hydrocarbon and an acid zeolite. We monitored this slow exchange reaction in two different zeolites using infrared spectroscopy, and used ab initio quantum chemistry calculations to determine both the reaction mechanism and the acidity–activity relationship. Combining our theoretical results with recent estimates8–11 of the acidity differences within zeolites enables us to reproduce the experimentally observed reaction rates and thus to obtain a detailed microscopic picture of this heterogeneous catalytic process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Thomas, J. M. Scient. Am., 266 (IV), 82–88 (1992).

    Article  Google Scholar 

  2. Maxwell, I. E. & Stork, W. H. J. in Introduction to Zeolite Science and Practice, (eds van Bekkum, H. et al.) 571–630 (Elsevier, Amsterdam, 1991).

    Book  Google Scholar 

  3. Jacobs, P. A. & Martens, J. A. in Introduction to Zeolite Science and Practice. (eds van Bekkum, H. et al.) 445–496 (Elsevier, Amsterdam, 1991).

    Book  Google Scholar 

  4. Abbot, J. & Wojciechowski, B. W. J. Catal. 115, 1–15 (1989).

    Article  CAS  Google Scholar 

  5. Stefanidis, C., Gates, B. C. & Haag, W. O. J. Molec. Catal. 67, 363–367 (1991).

    Article  Google Scholar 

  6. Sauer, J., Kölmel, C. M., Hill, J. R. & Ahlrichs, R. Chem. Phys. Lett. 164, 193–198 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Sauer, J., Horn, H., Häser, M. & Ahlrichs, R. Chem. Phys. Lett. 173, 26–32 (1990).

    Article  ADS  CAS  Google Scholar 

  8. Dubsky, J. Beran, S. & Bosác̆ek, V. J. Molec. Catal. 6, 321–326 (1979).

    Article  CAS  Google Scholar 

  9. Schröder, K.-P., Sauer, J., Leslie, M., Catlow, R. C. A. & Thomas, J. M. Chem. Phys. Lett. 188, 320–325 (1992).

    Article  ADS  Google Scholar 

  10. Schröder, K.-P., Sauer, J., Leslie, M. & Catlow, R. C. A. Zeolites 12, 20–23 (1992).

    Article  Google Scholar 

  11. Kramer, G. J. & van Santen, R. A. J. Am. chem. Soc. 115, 2887–2897 (1993).

    Article  CAS  Google Scholar 

  12. Kramer, G. J., de Man, A. J. M. & van Santen, R. A. J. Am. chem. Soc. 113, 6435–6441 (1991).

    Article  CAS  Google Scholar 

  13. Sauer, J. chem. Rev. 89, 199–255 (1989).

    Article  CAS  Google Scholar 

  14. Dupuis, M., Sprangler, D. & Wendolowski, D. NRCC Software Catalog 1, Program No. QG01, GAMESS (1980).

  15. Szabo, A. & Ostlund, N. S. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (Macmillan, New York, 1982).

    Google Scholar 

  16. Rice, O. K. Statistical Mechanics, Thermodynamics and Kinetics (Freeman, San Francisco, 1966).

    Google Scholar 

  17. Thruhlar, D. G. & Gordon, M. S. Science 249, 491–497 (1990).

    Article  ADS  Google Scholar 

  18. Gilbert, R. G. & Smith, S. C. Theory of Unimolecular and Recombination Reactions (Blackwell, Oxford, 1990).

    Google Scholar 

  19. Barrer, R. M., & Sutherland, J. W. Proc. R. Soc. A237, 439–450 (1956).

    ADS  Google Scholar 

  20. Papp, H., Hinsen, W., Do, N. T. & Baerns, M., Thermochim. Acta 82, 137–148 (1984).

    Article  CAS  Google Scholar 

  21. Yashonath, S., Thomas, J. M., Nowak, A. K. & Cheetham, A. K. Nature 331, 601–604 (1988).

    Article  ADS  CAS  Google Scholar 

  22. Johnston, H. S. Gas Phase Reaction Rate Theory (Ronald, New York, 1966).

    Google Scholar 

  23. Meier, W. M. & Olson, D. H. Atlas of Zeolite Structure Types, 2nd edn (Butterworth, Cambridge, 1987).

    Google Scholar 

  24. Lombardo, E. A., Sill, G. A. & Hall, W. K. J. Catal. 119, 426–440 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kramer, G., van Santen, R., Emeis, C. et al. Understanding the acid behaviour of zeolites from theory and experiment. Nature 363, 529–531 (1993). https://doi.org/10.1038/363529a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/363529a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing