Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

NMR structure of a receptor-bound G-protein peptide

Abstract

HETEROTRIMERIC GTP-binding proteins (G proteins) regulate cellular activity by coupling to hormone or sensory receptors. Stimulated receptors catalyse the release of GDP from G protein α-subunits1–4 and GTP bound to the empty α-subunits provides signals that control effectors such as adenylyl cyclases, phos-phodiesterases, phospholipases and ion channels4. Three cytoplas-mic loops of the activated receptor are thought to interact with three sites on the heterotrimeric G protein to provide high-affinity interaction and catalyse G-protein activation5–8. The carboxyl terminus of the α-subunit is particularly important for interaction with the receptor9–14. Here we study the structure of part of the active interface between the photon receptor rhodopsin and the G protein transducin, or Gt, using nuclear magnetic resonance. An 11-amino-acid peptide from the C terminus of the α-summit of Gtt (340–350)) binds to rhodopsin and mimics the G protein in stabilizing its active form, metarhodopsin II. The peptide αt(340–350) binds to both excited and unexcited rhodopsin and conformational differences between the two bound forms suggest a mechanism for activation of G proteins by agonist-stimulated receptors. Insight into receptor-catalysed GDP release will have broad application because the GTP/GDP exchange and the intrinsic GTPase activity of GTP-binding proteins constitute a widespread regulatory mechanism15.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Simon, M. I., Strathmann, M. P. & Gautam, N. Science 252, 802–808 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Kaziro, Y., Itoh, H., Kozasa, T., Nakafuku, M. & Satoh, T. A. Rev. Biochem. 60, 349–400 (1991).

    Article  CAS  Google Scholar 

  3. Dohlman, H. G., Thorner, J., Caron, M. G. & Lefkowitz, R. J. A. Rev. Biochem. 60, 653–688 (1991).

    Article  CAS  Google Scholar 

  4. Birnbaumer, L. A. Rev. Pharmac. Toxicol. 30, 675–705 (1990).

    Article  CAS  Google Scholar 

  5. Hamm, H. E. Cell molec. Neurobiol. 11, 563–578 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Hargrave, P. A., Hamm, H. E. & Hofmann, K. P. Bioassays 15, 1–8 (1993).

    Article  Google Scholar 

  7. Koenig, B. et al. Proc. natn. Acad. Sci. U.S.A. 86, 6878–6882 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Hausdorf, W.P., Hnatowich, M., O'Dowd, B. F., Caron, M. G. & Lefkowitz, R. J. J. biol. Chem. 265, 1388–1393 (1990).

    Google Scholar 

  9. Hamm, H. E. et al. Science 241, 832–835 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Spiegel, A. M., Simonds, W. F., Jones, L. F., Goldsmith, P. K. & Unson, C. G. Soc. gen. Physiol. ser. 45, 185–195 (1990).

    CAS  PubMed  Google Scholar 

  11. Sullivan, K. A. et al. Nature 338, 758–762 (1987).

    Article  ADS  Google Scholar 

  12. Sukumar, M. & Higashijima, T. J. biol. Chem. 267, 21421–21424 (1992).

    CAS  PubMed  Google Scholar 

  13. Weingarten, R., Ransnas, L., Mueller, H., Sklar, L. A. & Bokoch, G. M. J. biol. Chem. 265, 11044–11049 (1990).

    CAS  PubMed  Google Scholar 

  14. Conklin, B. R., Farfel, Z., Lustig, K. D., Julius, D. & Bourne, H. R. Nature 363, 274–276 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Bourne, H. R., Sanders, D. A. & McCormick, F. Nature 348, 125–132 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Clore, G. M. & Gronenborn, A. M. J. magn. Reson. 53, 423–442 (1983).

    ADS  CAS  Google Scholar 

  17. Campbell, A. P. & Sykes, B. D. J. magn. Reson. 93, 77–92 (1991).

    ADS  CAS  Google Scholar 

  18. Wilmot, C. M. & Thorton, J. M. J. molec. Biol. 203, 221–232 (1988).

    Article  CAS  PubMed  Google Scholar 

  19. Wilmot, C. M. & Thorton, J. M. Protein Engng 3, 479–493 (1990).

    Article  CAS  Google Scholar 

  20. Franke, R. R., Koenig, B., Sakmar, T. P., Khorana, H. G. & Hofmann, K. P. Science 250, 123–125 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Van Dop, C. et al. J. biol. Chem. 259, 23–26 (1984).

    CAS  PubMed  Google Scholar 

  22. Kurose, H., Katada, T., Amano, T. & Ui, M. J. biol. Chem. 258, 4870–4875 (1983).

    CAS  PubMed  Google Scholar 

  23. Avigan, J. et al. Biochemistry 31, 7736–7740 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Deretic, O. & Hamm, H. E. J. biol. Chem. 262, 10839–10847 (1987).

    CAS  PubMed  Google Scholar 

  25. Jurnak, F. Science 230, 32–36 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Hwang, Y.-W., Carter, M. & Miller, D. L. J. biol. Chem. 267, 22198–22205 (1992).

    CAS  PubMed  Google Scholar 

  27. Denker, B. M., Schmidt, C. J. & Neer, E. J. J. biol. Chem. 267, 9998–10002 (1992).

    CAS  PubMed  Google Scholar 

  28. Camonis, J. H. & Jacquet, M. Molec cell. Biol. 8, 2980–2983 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cheung, A. H., Huang, R. C. & Strader, C. D. Molec. Pharmac 41, 1061–1065 (1992).

    CAS  Google Scholar 

  30. Dixon, R. A. F., Sigal, I. S. & Strader, C. D. Cold Spring Harbor Symp. Quant. Biol. LIII, 487–497 (1988).

    Article  Google Scholar 

  31. Hubbard, R., Brown, P. K. & Bownds, D. Meth. Enzym. 615–653 (1971).

  32. Ostheimer, G. J., Starkey, J. R., Lambert, C. G., Helgerson, S. L. & Dratz, E. A. J. Biol. Chem. 267, 120–128 (1992).

    Google Scholar 

  33. Brown, M. F., Deese, A. J. & Dratz, E. A. Meth Enzym. 81, 709–728 (1982).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dratz, E., Furstenau, J., Lambert, C. et al. NMR structure of a receptor-bound G-protein peptide. Nature 363, 276–281 (1993). https://doi.org/10.1038/363276a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/363276a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing