Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Elevated consumption of carbon relative to nitrogen in the surface ocean

Abstract

UPTAKE of atmospheric CO2 by the ocean's 'biological pump' is driven by export of carbon from the euphotic zone to deeper waters1,2. As nitrate is a limiting nutrient in large regions of the ocean, measurements of nitrate uptake are often used to estimate the amount of carbon exported in this way3–6. This presupposes knowledge of the molar C: N ratio in the organic material exported from the upper waters, which is usually taken to be 6.6 (the Redfield ratio7,8). Recent studies have suggested, however, that the consumption ratio of C:N may deviate from this value in coastal waters9–11. Here we present time-series from both coastal waters and open-ocean sites which demonstrate that net organic carbon production greatly exceeded that predicted from nitrate consumption and the Redfield C:N ratio. We found a similar discrepancy in sections across broad regions of the North Atlantic during eutrophic periods. Our results suggest that extrapolating from nitrate consumption using the Redfield ratio leads to significant underestimates of organic carbon export from the euphotic zone.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Volk, T. & Hoffert, M. I. in The Carbon Cycle and Atmospheric CO2 Natural Variations Archean to Present (Sundquist, E. T. & Broecker, W. S.) 99–110 (AGU, Washington, 1985).

    Google Scholar 

  2. Sarmiento, J. L. & Sundquist, E. T. Nature 356, 589–593 (1992).

    Article  CAS  ADS  Google Scholar 

  3. Eppley, R. W. & Peterson, B. J. Nature 282, 677–680 (1979).

    Article  ADS  Google Scholar 

  4. Eppley, R. W., Renger, E. H. & Betzer, P. R. Deep-Sea Res. 30, 311–323 (1983).

    Article  CAS  ADS  Google Scholar 

  5. Chavez, F. P. & Barber, R. T. Deep-Sea Res. 34, 1220–1243 (1987).

    Article  ADS  Google Scholar 

  6. Platt, T. et al. Mar. Ecol. Progr. Ser. 52, 77–88 (1989).

    Article  ADS  Google Scholar 

  7. Redfield, S. C., Ketchum, B. H. & Richards, F. A. in The Sea (ed. Hill, M. N.) 26–77 (Wiley New York, 1963).

    Google Scholar 

  8. Takahashi, T., Broecker, W. S. & Langer, S. J. geophys. Res. 90, 6907–6924 (1985).

    Article  CAS  ADS  Google Scholar 

  9. Codispoti, L. A., Friederich, G. E. & Hood, D. W. Continental Shelf Res. 5, 133–160 (1986).

    Article  ADS  Google Scholar 

  10. Karl, D. M., Tilbrook, B. D. & Tien, G. Deep-Sea Res. 38, 1097–1126 (1991).

    Article  CAS  ADS  Google Scholar 

  11. Sambrotto, R. N. & Langdon, C. Continental Shelf Res. (in the press).

  12. Jenkins, W. J. & Goldman, J. C. J. mar. Res. 43, 465–491 (1985).

    Article  CAS  Google Scholar 

  13. Jenkins, W. J. Nature 331, 521–523 (1988).

    Article  CAS  ADS  Google Scholar 

  14. Emerson, S., Quay, P., Stump, C., Wilbur, D. & Knox, M. Global biogeochem. Cycles 5, 49–69 (1991).

    Article  CAS  ADS  Google Scholar 

  15. Minas, H. J. ICES Marine Sci. Symp. Series (eds Li, W. K. W. & Maestrini, S. Y.) (International Council for the Exploration of the Sea, Copenhagen, in the press).

  16. Cooper, L. H. N. J. mar. biol. Assoc. UK 18, 677–728 (1933).

    Article  CAS  Google Scholar 

  17. Chipman, D., Marra, J. & Takahashi, T. Deep-Sea Res. 40, 151–169 (1993).

    Article  CAS  ADS  Google Scholar 

  18. Savidge, G. et al. Progr. Oceanogr. 29, 235–281 (1992).

    Article  ADS  Google Scholar 

  19. Watson, A. J., Robinson, C., Robertson, J. E., Williams, P. J. le B. & Fasham, M. J. R. Nature 350, 50–53 (1991).

    Article  CAS  ADS  Google Scholar 

  20. Esaias, W. E., Feldman, G. C., McClain, C. R. & Elrod, J. A. Eos. 67, 835–837 (1986).

    Article  ADS  Google Scholar 

  21. Carpenter, E. J. & Romans, K. Science 254, 1356–1358 (1991).

    Article  CAS  ADS  Google Scholar 

  22. Duce, R. A. in The Role of Air-Sea Exchange in Geochemical Cycling (ed. Baut-Menard, P.) 497–530 (Reidel, Dordrecht, 1986).

    Book  Google Scholar 

  23. Huntley, M. E., Lopez, M. D. G. & Karl, D. M. Science 253, 64 (1991).

    Article  CAS  ADS  Google Scholar 

  24. Schulenberger, E. & Reid, J. L. Deep-Sea Res. 28, 901–919 (1981).

    Article  ADS  Google Scholar 

  25. Karl, D. M. Int. Geosphere-Biosphere Progr. Symp. Global Change Tokyo, April, 1992 (in the press).

  26. Martin, J. H., Knauer, G. A., Karl, D. M. & Broenkow, W. W. Deep-Sea Res. 34, 267–285 (1987).

    Article  CAS  ADS  Google Scholar 

  27. Hood, D. W. & Codispoti, L. A. in The Potential Effects of Carbon Dioxide Induced Climatic Change in Alaska (ed. McBeath, J. H.) 33–39 (Univ. of Alaska, 1984).

    Google Scholar 

  28. Sambrotto, R. N., Martin, J. H., Broenkow, W. W., Carlson, C. & Fitzwater, S. E. Deep-Sea Res. 40, 441–457 (1993).

    CAS  ADS  Google Scholar 

  29. Glover, D. M. & Brewer, P. G. Deep-Sea Res. 35, 1525–1546 (1988).

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sambrotto, R., Savidge, G., Robinson, C. et al. Elevated consumption of carbon relative to nitrogen in the surface ocean. Nature 363, 248–250 (1993). https://doi.org/10.1038/363248a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/363248a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing