Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

NMR evidence for excess non-bridging oxygen in an aluminosilicate glass

Abstract

The most common of man-made glasses have aluminosilicate compositions, and such glasses also form from rapidly cooling magmas1. Oxygen is the most abundant element in these materials, where it occupies either ‘bridging’ (BO) or ‘non-bridging’ (NBO) sites. BOs link two AlO4 or SiO4 tetrahedra, thereby providing strong, long-lived bonds between the smallest structural units of the aluminosilicate network. NBOs provide a relatively weak connection between one tetrahedral cation (Al or Si) and one or more network modifier cations — such as Ca2+or Na+ — that are not an integral part of the tetrahedral network. The relative abundance of these weakly bonded NBOs is critical in determining the thermodynamic and dynamical properties of aluminosilicate glasses and melts1,2,3. For glasses of ‘tectosilicate’ composition, where the charge of the modifier cation equals the number of aluminium atoms (as in NaAlSi3O8 or CaAl2Si2O8), the conventional view of glass structure is that only BOs are present1,4. Here we present experimental observations that contradict this view. Our NMR measurements of CaAl2Si2O8, which determine directly the relative abundances of BO and NBO, indicate that a considerable amount of NBO can be present in a tectosilicate glass. These excess NBOs will increase the entropy and heat capacity of the corresponding liquid and decrease its viscosity, as well as modifying flow and diffusion mechanisms2,3. As the most common rhyolitic magmas and the molten precursors of glass ceramics have near-tectosilicate compositions1,4, our results require a reassessment of the high-temperature liquid properties that control many processes in the Earth and in industry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Oxygen-17 MAS NMR spectra of glasses A and B.
Figure 2: Oxygen-17 3QMAS NMR spectrum of glass B.
Figure 3: Cartoon of transformation of bridging oxygen (BO) to non-bridging oxygen (NBO).

Similar content being viewed by others

References

  1. Mysen, B. O. Structure and Properties of Silicate Melts (Elsevier, Amsterdam, (1988)).

    Google Scholar 

  2. Richet, P. & Neuville, D. R. in Thermodynamic Data (ed. Saxena, S. K.) (Springer, New York, (1992)).

    Google Scholar 

  3. Stebbins, J. F. in Structure, Dynamics, and Properties of Silicate Melts (eds Stebbins, J. F., McMillan, P. F. & Dingwell, D. B.) (Mineralogical Society of America, Washington DC, (1995)).

    Book  Google Scholar 

  4. Navrotsky, A. Physics and Chemistry of Earth Materials (Cambridge Univ. Press, (1994)).

    Book  Google Scholar 

  5. Riebling, E. F. Structure of sodium aluminosilicate melts containing at least 50 mol% SiO2at 1500 °C. J. Chem. Phys. 44, 2857–2865 (1966).

    Article  ADS  CAS  Google Scholar 

  6. Bottinga, Y. & Weill, D. F. The viscosity of magmatic silicate liquids: a model for calculation. Am. J. Sci. 272, 438–475 (1972).

    Article  ADS  CAS  Google Scholar 

  7. Weill, D. F., Hon, R. & Navrotsky, A. in Physics of Magmatic Processes (ed. Hargraves, R. B.) (Princeton University Press, Princeton, NJ, (1980)).

    Google Scholar 

  8. Taylor, M. & Brown, G. E. J Structure of mineral glasses — I. The feldspar glasses NaAlSi3O8, KAlSi3O8, CaAl2Si2O8. Geochim. Cosmochim. Acta 43, 61–75 (1979).

    Article  ADS  CAS  Google Scholar 

  9. Mysen, B. O., Virgo, D. & Seifert, F. A. The structure of silicate melts: implications for chemical and physical properties of natural magma. Rev. Geophys. Space Phys. 20, 353–383 (1982).

    Article  ADS  CAS  Google Scholar 

  10. Murdoch, J. B., Stebbins, J. F. & Carmichael, I. S. E. High-resolution 29Si NMR study of silicate and aluminosilicate glasses: the effect of network-modifying cations. Am. Mineral. 70, 332–343 (1985).

    CAS  Google Scholar 

  11. Merzbacher, C. I., Sherriff, B. L., Hartman, J. S. & White, W. B. Ahigh resolution 29Si and 27Al NMR study of alkalineg earth aluminosilicate glasses. J. Non-Cryst. Solids 124, 194–206 (1990).

    Article  ADS  CAS  Google Scholar 

  12. Toplis, M. J. & Dingwell, D. B. Viscosity maxima of melts close to the ‘charge balanced’ join in the systems (Na2O, CaO, MgO)–Al2O3–SiO2: implications for the structural role of aluminium. Eos Trans. Am. Geophys. Un. 77, F848 (1996).

    Google Scholar 

  13. Toplis, M. J., Dingwell, D. B. & Lenci, T. Peraluminous viscosity maxima in Na2O–Al2O3–SiO2liquids: the role of triclusters in tectosilicate melts. Geochim. Cosmochim. Acta 61, 2605–2612 (1997).

    Article  ADS  CAS  Google Scholar 

  14. Farnan, I. et al. Quantification of the disorder in network modified silicate glasses. Nature 358, 31–35 (1992).

    Article  ADS  CAS  Google Scholar 

  15. Florian, P., Vermillion, K. E., Grandinetti, P. J., Farnan, I. & Stebbins, J. F. Cation distribution in mixed alkali disilicate glasses. J. Am. Chem. Soc. 118, 3493–3497 (1996).

    Article  CAS  Google Scholar 

  16. Kirkpatrick, R. J. in Spectroscopic Methods in Mineralogy and Geology (ed. Hawthorne, F. C.) (Mineralogical Society of America, Washington DC, (1988)).

    Google Scholar 

  17. Oglesby, J. V., Xu, Z. & Stebbins, J. F. Non-bridging oxygen order and disorder in mixed alkaline earth silicate glasses. Eos Trans. Am. Geophys. Un. 77, F834 (1996).

    Google Scholar 

  18. Stebbins, J. F., Ogelsby, J. V. & Xu, Z. Disorder among network modifier cations in silicate glasses: new constraints from triple-quantum oxygen-17 NMR. Am. Mineral. (in the press).

  19. Frysman, L. & Harwood, J. S. Isotropic spectra of half-integer quadrupolar spins from bidimensional magic-angle spinning NMR. J. Am. Chem. Soc. 17, 5367–5368 (1995).

    Article  Google Scholar 

  20. Baltisberger, J. H., Xu, Z., Stebbins, J. F., Wang, S. & Pines, A. Triple-quantum two-dimensional 27Al magic-angle spinning nuclear magnetic resonance spectroscopic study of aluminosilicate and aluminate crystals and glasses. J. Am. Chem. Soc. 118, 7209–7214 (1996).

    Article  CAS  Google Scholar 

  21. Dirken, P. J., Kohn, S. C., Smith, M. E. & van Eck, E. R. H. Complete resolution of Si–O–Si and Si–O–Al fragments in an aluminosilicate glass by 17O multiple quantum magic angle spinning NMR spectroscopy. Chem. Phys. Lett. 266, 568–574 (1997).

    Article  ADS  CAS  Google Scholar 

  22. Xue, X., Stebbins, J. F. & Kanzaki, M. Correlations between O-17 NMR parameters and local structure around oxygen in high-pressure silicates and the structure of silicate melts at high pressure. Am. Mineral. 79, 31–42 (1994).

    CAS  Google Scholar 

  23. Xu, Z. & Stebbins, J. F. NMR study of oxygen isotope exchange in stilbite. Eos Trans. Am. Geophys. Un. 77, F827 (1996).

    Google Scholar 

  24. Xu, Z. & Stebbins, J. F. Oxygen sites in the zeolite, stilbite: a comparison of static, MAS, VAS, DAS, and triple quantum MAS NMR techniques. Solid State NMR (in the press).

  25. McMillan, P. A. Raman study of glasses in the system CaO–MgO–SiO2, Am. Mineral. 69, 645–659 (1984).

    ADS  CAS  Google Scholar 

  26. Farnan, I. & Stebbins, J. F. Ahigh temperature 29Si NMR investigation of solid and molten silicates. J. Am. Chem. Soc. 112, 32–39 (1990).

    Article  CAS  Google Scholar 

  27. Xue, X., Stebbins, J. F., Kanzaki, M., McMillan, P. F. & Poe, B. Pressure-induced silicon coordination: NMR, Raman, and infrared spectroscopy. Am. Mineral. 76, 8–26 (1991).

    CAS  Google Scholar 

  28. Massiot, D. et al. Two-dimensional magic-angle spinning isotropic reconstruction sequences for quadrupolar nuclei. Solid State NMR 6, 73–84 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Jones (Stanford Centre for Materials Research) for the microprobe analyses. This work was funded by the US National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan F. Stebbins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stebbins, J., Xu, Z. NMR evidence for excess non-bridging oxygen in an aluminosilicate glass. Nature 390, 60–62 (1997). https://doi.org/10.1038/36312

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/36312

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing