Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Role of sulphur photochemistry in tropical ozone changes after the eruption of Mount Pinatubo

Abstract

RECENT observations suggest that the eruption of Mount Pinatubo in June 1991 has had a considerable effect on ozone concentrations in the tropical stratosphere (refs 1, 2, and J. W. Waters, personal communication). Although stratospheric ozone losses following volcanic eruptions are generally attributed to the presence of sulphate aerosol3–7, we present model calculations which demonstrate that gas-phase sulphur chemistry may have played a part in the tropical ozone perturbations that followed the Pinatubo eruption. We find that in the first month or so after the eruption, the large amount of SO2 injected into the tropical atmosphere catalyses mid-stratospheric ozone production. On the other hand, the SO2 cloud absorbs solar radiation, thereby reducing the rate of O2 photolysis (and hence of ozone production) below it. These two effects cancel each other out at an altitude of about 25 kilometres. After one or two months, most of the SO2 has been oxidized to sulphate; the efficiency of these two mechanisms then becomes negligible (although ozone remains perturbed in the lower stratosphere because of its long photochemical lifetime in this region). The model features show good agreement with initial ozone measurements following the eruption, including both the mid-altitude switch from ozone loss to ozone gain1, and the increase and subsequent decrease in the total ozone column2,7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Grant, W. B. et al Geophys. Res. Lett. 19, 1109–1112 (1992).

    Article  ADS  CAS  Google Scholar 

  2. Schoeberl, M. R., Bhartia, P. K., Hilsenrath, E. & Torres, O. Geophys. Res. Lett. 20, 29–32 (1993).

    Article  ADS  CAS  Google Scholar 

  3. Hofmann, D. J. & Solomon, S. J. geophys. Res. 94, 5029–5041 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Prather, M. J. J. geophys. Res 97, 10187–10191 (1992).

    Article  ADS  Google Scholar 

  5. Michelangeli, D. V., Allen, M. & Yung, Y. L. J. geophys. Res. 94, 18429–18443 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Brasseur, G. P. & Granier, C. Science 257, 1239–1242 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Kinne, S., Toon, O. B. & Prather, M. J. Geophys. Res. Lett. 19, 1927–1930 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Chandra, S. Geophys. Res. Lett 20, 33–36 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Bluth, G. J. S., Doiron, S. D., Schnetzler, C. C., Krueger, A. J. & Walter, L. S. Geophys. Res. Lett. 9, 151–154 (1992).

    Article  ADS  Google Scholar 

  10. McCormick, M. P. & Veiga, R. E. Geophys. Res. Lett. 9, 155–158 (1992).

    Article  ADS  Google Scholar 

  11. Stockwell, W. R. & Calvert, J. G. Atmos. Envir. 17, 2231–2235 (1983).

    Article  CAS  Google Scholar 

  12. McKeen, S. A., Liu, S. C. & Kiang, C. S. J. geophys. Res. 89, 4873–4881 (1984).

    Article  ADS  CAS  Google Scholar 

  13. Crutzen, P. J. & Schmailzl, U. Planet. Space Sci. 31, 1009–1032 (1983).

    Article  ADS  CAS  Google Scholar 

  14. Okabe, H. Photochemistry of Small Molecules (Wiley-lnterscience, New York, 1978).

    Google Scholar 

  15. Harwood, R. S. & Pyle, J. A. Q. Jl R. met. Soc. 101, 723–748 (1975).

    Article  ADS  Google Scholar 

  16. Haigh, J. D. & Pyle, J. A. Q. Jl R. met. Soc. 108, 551–574 (1982).

    Article  ADS  CAS  Google Scholar 

  17. Bekki, S. & Pyle, J. A. J. geophys. Res. 97, 15839–15847 (1992).

    Article  ADS  CAS  Google Scholar 

  18. DeMore, W. B. et al. Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling Evaluation 9, 90–1 (NASA/JPL Publ. 1990).

    Google Scholar 

  19. Yung, Y. L. & DeMore, W. B. Icarus 51, 199–247 (1982).

    Article  ADS  CAS  Google Scholar 

  20. Bernard, A., Demaiffe, D., Matielli, N., Runong-bayan, R. S. Nature 354, 139–140 (1991).

    Article  ADS  CAS  Google Scholar 

  21. Trepte, C. R. & Hitchman, M. H. Nature 355, 626–628 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bekki, S., Toumi, R. & Pyle, J. Role of sulphur photochemistry in tropical ozone changes after the eruption of Mount Pinatubo. Nature 362, 331–333 (1993). https://doi.org/10.1038/362331a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/362331a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing