Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Yeast tRNAAsp recognition by its cognate class II aminoacyl-tRNA synthetase

Abstract

AMINOACYL-RNA synthetases can be divided into two classes according to structural features inferred from sequence alignments1–3. This classification correlates almost perfectly with the attachment of the amino acid to the 2'-OH (class I) or 3'-OH (class II) group of the terminal adenosine4–6. Six subgroups of higher homology can be inferred from sequence analysis7,8. The five aminoacyl-tRNA synthetases whose crystal structures are known (MetRS, TyrRS and GlnRS in class I, SerRS and AspRS in class II) 9–13 belong to different subgroups. Two of them, GlnRS and AspRS, have been cocrystallized with their cognate tRNA11,13. AspRS, like six other members of class II, is an a2 dimer. Yeast tRNAAsp exhibits five identity determinants: the three anticodon bases, the discriminator base G73 and the base pair G10-U2514. We report here that the refined crystal structure of AspRS com-plexed with tRNAAsp at 2.9 A resolution reveals three regions of contact, each involving a domain of AspRS and at least one identity determinant of tRNAAsp. The mode of binding of the acceptor stem of tRNAAsp by AspRS can be generalized to class II aminoacyl-tRNA synthetases, whereas the deciphering of the anticodon, which involves a large conformational change of the loop and the formation of a bulge, is more specific to the aspartic system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Eriani, G., Delarue, M., Poch, O., Gangloff, J. & Moras, D. Nature 347, 203–206 (1990).

    Article  ADS  CAS  Google Scholar 

  2. Webster, T., Tsai, H., Kula, M., Mackie, G. A. & Schimmel, P. Science 226, 1315–1317 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Hountondji, C., Dessen, P. & Blanquet, S. Biochimie 68, 1071–1078 (1986).

    Article  CAS  Google Scholar 

  4. Fraser, T. H. & Rich, A. Proc. natn. Acad Sci. U.S.A. 72, 3044–3048 (1975).

    Article  ADS  CAS  Google Scholar 

  5. Von der Haar, F. & Cramer, F. Biochemistry 15, 4131–4136, (1976).

    Article  CAS  Google Scholar 

  6. Hecht, S. M. Transfer RNA: Structures, Properties and Recognition (eds P. P. Schimmel, D. Söll & J. N. Abelson) 345–360 (Cold Spring Harbor Laboratory Press, New York, 1979).

    Google Scholar 

  7. Cusack, S., Härtlein, M. & Leberman, R. Nucleic Acids Res. 19, 3489–3498 (1991).

    Article  CAS  Google Scholar 

  8. Moras, D. Trends biochem. Sci. 17, 159–164 (1992).

    Article  CAS  Google Scholar 

  9. Brick, P., Bhat, T. N. & Blow, D. M. J. molec. Biol. 208, 83–98 (1989).

    Article  CAS  Google Scholar 

  10. Brunie, S., Zelwer, C. & Risler, J. L. J. molec. Biol. 216, 411–424 (1990).

    Article  CAS  Google Scholar 

  11. Rould, M. A., Perona, J. J., Söll, D. & Steitz, T. A. Science 246, 1135–1142 (1989).

    Article  ADS  CAS  Google Scholar 

  12. Cusack, S., Berthet-Colominas, C., Härtlein, M., Nassar, N. & Leberman, R. Nature 347, 249–255 (1990).

    Article  ADS  CAS  Google Scholar 

  13. Ruff, M. et al. Science 252, 1682–1689 (1991).

    Article  ADS  CAS  Google Scholar 

  14. Pütz, J., Puglisi, J. D., Florentz, C. & Giegé, R. Science 252, 1696–1699 (1991).

    Article  ADS  Google Scholar 

  15. Hynes, T. R. & Fox, R. O. Proteins 10, 92–105 (1991).

    Article  CAS  Google Scholar 

  16. Sixma, T. K. Nature 355, 561–564 (1992).

    Article  ADS  CAS  Google Scholar 

  17. Stein, P. E., Boodhoo, A., Tyrrell, G. J., Brunton, J. L. & Read, R. J. Nature 355, 748–750 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Eriani, G., Dirheimer, G. & Gangloff, J. Nucleic Acids Res. 18, 7109–7117 (1990).

    Article  CAS  Google Scholar 

  19. Anselme, J. & Hartlein, M. Gene 84, 481–485 (1989).

    Article  CAS  Google Scholar 

  20. Leveque, F., Plateau, P., Dessen, P. & Blanquet, S. Nucleic Acids Research 18, 305–312 (1990).

    Article  CAS  Google Scholar 

  21. Moras, D. et al. Nature 288, 669–674 (1980).

    Article  ADS  CAS  Google Scholar 

  22. Westhof, E., Dumas, P. & Moras, D. J. molec. Biol. 184, 119–145 (1985).

    Article  CAS  Google Scholar 

  23. McClain, W. H. & Foss, K. Science 241, 1804–1807 (1988).

    Article  ADS  CAS  Google Scholar 

  24. Hou, Y. M. & Schimmel, P. Nature 333, 140–145 (1988).

    Article  ADS  CAS  Google Scholar 

  25. Kraulis, P. J. J. appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  26. Eriani, G., et al. Eur. J. Biochem. 200, 337–343 (1991).

    Article  CAS  Google Scholar 

  27. Brünger, A. T. J. molec. Biol. 203, 803–816 (1988).

    Article  Google Scholar 

  28. Carson, M. K. J. appl. Crystallogr. 24, 958–961 (1991).

    Article  Google Scholar 

  29. Garcia, A. & Giegé, R. Biochem. biophys. Res. Commun. 186, 956–962 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavarelli, J., Rees, B., Ruff, M. et al. Yeast tRNAAsp recognition by its cognate class II aminoacyl-tRNA synthetase. Nature 362, 181–184 (1993). https://doi.org/10.1038/362181a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/362181a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing