Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Selection is not required to produce invariant T-cell receptor γ-gene junctional sequences

Abstract

RECOMBINATION of V-, D- and J-gene segments can generate an enormous diversity of T-cell antigen receptor (TCR) gene sequences1,2. Although many γδ T cells fully exploit this diversification process, those in the epidermal and vaginal epithelium do not3,4, predominantly expressing invariant γδ receptors in which the V–(D)–J junctional sequences in almost all the productive rearrangements are identical. The almost exclusive use of identical TCRs by cells in these sites is thought to reflect recognition of a stress-induced autologous antigen5–8. To explain the prevalence of the invariant junctional sequences, it has been proposed that thymic selection operates on a population of originally diverse progenitor cells, resulting in a homogeneous repertoire9,10. Alternatively the invariant sequences may result from biases in the recombination machinery in the fetal thymic progenitors of these cells8,11,12. We report here the use of mice into which mutated TCR γ-gene rearrangement substrates have been introduced as transgenes to demonstrate directly that the canonical TCR Vγ3–Jγl and Vγ4–Jγl sequences occur at high frequency in the absence of the possibility of selection for the protein products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Davis, M. M. & Bjorkman, P. J. Nature 334, 395–402 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Tonegawa, S. Nature 302, 575–581 (1983).

    Article  ADS  CAS  Google Scholar 

  3. Asarnow, D. M., Goodman, T., LeFrancois, L. & Allison, J. P. Nature 341, 60–62 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Itohara, S. et al. Nature 343, 754–757 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Asarnow, D. M. et al. Cell 55, 837–847 (1988).

    Article  CAS  Google Scholar 

  6. Havran, W. L., Chien, Y. H. & Allison, J. P. Science 252, 1430–1432 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Janeway, C. A. Jr, Jones, B. & Hayday, A. Immun. Today 9, 73–76 (1988).

    Article  Google Scholar 

  8. Allison, J. P. & Havran, W. L. A. Rev. Immun. 9, 679–705 (1991).

    Article  CAS  Google Scholar 

  9. Lafaille, J. J., DeCloux, A., Bonneville, M., Takagaki, Y. & Tonegawa, S. Cell 59, 859–870 (1989).

    Article  CAS  Google Scholar 

  10. Itohara, S. & Tonegawa, S. Proc. natn. Acad Sci. U.S.A. 87, 7935–7938 (1990).

    Article  ADS  CAS  Google Scholar 

  11. Gu, H., Forster, I. & Rajewsky, K. EMBO J. 9, 2133–2140 (1990).

    Article  CAS  Google Scholar 

  12. Raulet, D. et al. Immun. Rev. 120, 185–204 (1991).

    Article  CAS  Google Scholar 

  13. Garman, R. D., Doherty, P. J. & Raulet, D. H. Cell 45, 733–742 (1986).

    Article  CAS  Google Scholar 

  14. Spencer, D. M., Hsiang, Y.-H., Goldman, J. P. & Raulet, D. H. Proc. natn. Acad Sci. U.S.A. 88, 800–804 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Kappes, D., Browne, C. P. & Tonegawa, S. Proc. natn. Acad. Sci. U.S.A. 88, 2204–2208 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Nandi, D. & Allison, J. P. J. Immun. 147, 1773–1778 (1991).

    CAS  PubMed  Google Scholar 

  17. McCormack, W. T. et al. Cell 56, 785–791 (1989).

    Article  CAS  Google Scholar 

  18. Engler, P., Klotz, E. & Storb, U. J. exp. Med. 176, 1399–1404 (1992).

    Article  CAS  Google Scholar 

  19. Alt, F. W. & Baltimore, D. Proc. natn. Acad. Sci. U.S.A. 79, 4118–4122 (1982).

    Article  ADS  CAS  Google Scholar 

  20. Goldman, J., Spencer, D. & Raulet, D. J. exp. Med. (in the press).

  21. Heilig, J. S. & Tonegawa, S. Nature 322, 836–840 (1986).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asarnow, D., Cado, D. & Raulet, D. Selection is not required to produce invariant T-cell receptor γ-gene junctional sequences. Nature 362, 158–160 (1993). https://doi.org/10.1038/362158a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/362158a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing