Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

231Pa/230Th ratios in sediments as a proxy for past changes in Southern Ocean productivity

Abstract

THE biological productivity of the oceans is sensitive to changes in climate, which can affect essential factors such as nutrient and light availability. In turn, ocean productivity may influence climate by regulating the partitioning of carbon dioxide, a greenhouse gas, between the ocean and the atmosphere. Investigators have attempted to link variations in atmospheric CO2 content, recorded in ice cores1,2, to the productivity of the Southern Ocean3–6, but an unambiguous means of assessing past changes in ocean productivity has been lacking. Here we exploit established relationships between 231Pa/230Th ratios and particle flux7–12 to infer, from the analysis of dated sediment cores, variability through time of fluxes of particulate biogenic material exported from surface waters. Records from two cores in the Atlantic sector of the Southern Ocean indicate that ocean productivity during glacial periods was lower than at present south of the Antarctic polar front, and support earlier conclusions13–16 that the zone of maximum productivity migrated northwards during glacial conditions. Although further work at other sites is needed for an assessment of changes in total Antarctic productivity, our technique has the potential to provide this information while avoiding some of the limitations of other productivity proxies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Barnola, J. M., Raynaud, D., Korotkevich, Y. S. & Lorius, C. Nature 329, 408–413 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Neftel, A., Oeschger, H., Staffelbach, T. & Stauffer, B. Nature 331, 609–611 (1988).

    Article  ADS  Google Scholar 

  3. Knox, F. & McElroy, M. B. J. geophys. Res. 89, 4629–4637 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Sarmiento, J. L. & Toggweiler, J. R. Nature 308, 621–624 (1984).

    Article  ADS  CAS  Google Scholar 

  5. Kier, R. S. Paleoceanography 5, 253–276 (1990).

    Article  ADS  Google Scholar 

  6. Martin, J. H. Paleoceanography 5, 1–13 (1990).

    Article  ADS  Google Scholar 

  7. Anderson, R. F., Bacon, M. P. & Brewer, P. G. Earth planet. Sci. Lett. 62, 7–23 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Anderson, R. F., Bacon, M. P. & Brewer, P. G. Earth planet. Sci. Lett. 66, 73–90 (1983).

    Article  ADS  CAS  Google Scholar 

  9. Taguchi, K., Harada, K. & Tsunogai, S. Earth planet. Sci. Lett. 93, 223–232 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Lao, Y. et al. Earth planet. Sci. Lett. 113, 173–189 (1992).

    Article  CAS  Google Scholar 

  11. Lao, Y., Anderson, R. F., Broecker, W. S., Hofmann, H. J. & Wolfli, W. Geochim. cosmochim. Acta 57, 205–217 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Yang, H. S., Nozaki, Y., Sakai, Y. & Masuda, A. Geochim. cosmochim. Acta 50, 81–89 (1986).

    Article  ADS  CAS  Google Scholar 

  13. Mortlock, R. A. et al. Nature 351, 220–222 (1991).

    Article  ADS  Google Scholar 

  14. Charles, C. D., Froelich, P. N., Zibello, M. A., Mortlock, R. A. & Morley, J. J. Paleoceanography 6, 697–728 (1991).

    Article  ADS  Google Scholar 

  15. Cooke, D. W. & Hays, J. D. in Antarctic Geoscience (ed. Craddock, C.) 1017–1025 (Univ. of Wisconsin, Madison, 1982).

    Google Scholar 

  16. Burckle, L. H. & Cirilli, J. Micropaleontology 33, 82–86 (1987).

    Article  Google Scholar 

  17. Labeyrie, L. & Duplessy, J. C. Paleogeogr. Paleoclimatol. Pateoecol. 50, 217–240 (1985).

    ADS  CAS  Google Scholar 

  18. Charles, C. D. & Fairbanks, R. G. in The Geologic History of the Polar Oceans: Arctic vs Antarctic (eds Bleil, U. & Thiede, J.) 519–538 (Kluwer, Dordrecht, 1990).

    Book  Google Scholar 

  19. Boyle, E. A. J. geophys. Res. 93, 15701–15715 (1988).

    Article  ADS  Google Scholar 

  20. Keigwin, L. D. & Boyle, E. A. Paleogeogr. Paleoclimatol. Paleoecol. 73, 85–106 (1989).

    Article  ADS  Google Scholar 

  21. Froeiich, P. N., Mortlock, R. A. & Shemesh, A. Global biogeochem. Cycles 3, 79–88 (1989).

    Article  ADS  Google Scholar 

  22. Froeiich, P. N. et al. Paleoceanography (in the press).

  23. Pichon, J.-J. et al. Quat. Res. 37, 361–378 (1992).

    Article  CAS  Google Scholar 

  24. Berger, W. H. Nature 351, 186–187 (1991).

    Article  ADS  Google Scholar 

  25. Deuser, W. G., Ross, E. H. & Anderson, R. F. Deep-Sea Res. A28, 495–505 (1981).

    Article  ADS  CAS  Google Scholar 

  26. Ku, T. L., Knauss, K. G. & Mathieu, G. G. Deep-Sea Res. 24, 1005–1017 (1977).

    Article  ADS  CAS  Google Scholar 

  27. Chen, J. H., Edwards, R. L. & Wasserburg, G. J. Earth planet. Sci. Lett. 80, 241–251 (1986).

    Article  ADS  CAS  Google Scholar 

  28. Cochran, J. K. in Uranium Series Disequilibria: Applications to Environmental Problems (eds Ivanovich, M. & Harmon, R. S.) 384–430 (Clarendon, London, 1982).

    Google Scholar 

  29. Moore, W. S. & Sackett, W. M. J. geophys. Res. 69, 5401–5405 (1964).

    Article  ADS  CAS  Google Scholar 

  30. Bacon, M. P. Isotope Geosci. 2, 97–111 (1984).

    CAS  Google Scholar 

  31. Francois, R., Bacon, M. P. & Suman, D. O. Paleoceanography 5, 761–787 (1990).

    Article  ADS  Google Scholar 

  32. Yang, Y. L., Elderfield, H. & Ivanovich, M. Paleoceanography 5, 789–809 (1990).

    Article  ADS  Google Scholar 

  33. Bacon, M. P. Phil. Trans. R. Soc. A325, 147–160 (1988).

    ADS  CAS  Google Scholar 

  34. Sarnthein, M., Winn, K., Duplessy, J.-C. & Fontugne, M. R. Paleoceanography 3, 361–399 (1988).

    Article  ADS  Google Scholar 

  35. Lyle, M. Nature 335, 529–532 (1988).

    Article  ADS  CAS  Google Scholar 

  36. Pedersen, T. M., Nielsen, B. & Pickering, M. Paleoceanography 6, 637–677 (1992).

    Google Scholar 

  37. Martinson, D. G. et al. Quat. Res. 27, 1–29 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, N., Gwiazda, R., Anderson, R. et al. 231Pa/230Th ratios in sediments as a proxy for past changes in Southern Ocean productivity. Nature 362, 45–48 (1993). https://doi.org/10.1038/362045a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/362045a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing