Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The chaotic obliquity of the planets

Abstract

Numerical study of the global stability of the spin-axis orientation (obliquity) of the planets against secular orbital perturbations shows that all of the terrestrial planets could have experienced large, chaotic variations in obliquity at some time in the past. The obliquity of Mars is still in a large chaotic region, ranging from 0° to 60°. Mercury and Venus have been stabilized by tidal dissipation, and the Earth may have been stabilized by capture of the Moon. None of the obliquities of the terrestrial planets can therefore be considered as primordial.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Harris, A. W. & Ward, W. R. A. Rev. planet. Sci. 10, 61–108 (1982).

    Article  ADS  Google Scholar 

  2. Tremaine, S. Icarus 89, 85–92 (1991).

    Article  ADS  Google Scholar 

  3. Dones, L. & Tremaine, S. Science 259, 350–354 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Safronov, V. S. Evolution of the Protoplanetary Cloud and Formation of the Earth and the Planets (Nauka, Moscow, 1969).

    Google Scholar 

  5. Laskar, J., Joutel, F. & Robutel, P. Nature 361, 615–617 (1993).

    Article  ADS  Google Scholar 

  6. Chirikov, B. V. Phys. Rep. 52, 263 (1979).

    Article  ADS  Google Scholar 

  7. Lambeck, K. The Earth's Variable Rotation: Geophysical Causes and Consequences (Cambridge Univ. Press, 1980).

    Book  Google Scholar 

  8. Laskar, J. Icarus 88, 266–291 (1990).

    Article  ADS  Google Scholar 

  9. MacDonald, G. J. F. Rev. Geophys. 2, 467–541 (1964).

    Article  ADS  Google Scholar 

  10. Goldreich, P. & Soter, S. Icarus 5, 375–389 (1966).

    Article  ADS  Google Scholar 

  11. Burns, J. A. Icarus 28, 453–458 (1976).

    Article  ADS  Google Scholar 

  12. Peale, S. J. Icarus 28, 459–467 (1976).

    Article  ADS  Google Scholar 

  13. Goldreich, P. & Peale, S. J. Astr. J. 75, 273–284 (1970).

    Article  ADS  Google Scholar 

  14. Dobrovolskis, A. R. Icarus 41, 18–35 (1980).

    Article  ADS  Google Scholar 

  15. Ward, W. R. J. geophys. Res. 79, 3375–3386 (1974).

    Article  ADS  Google Scholar 

  16. Hilton, J. L. Astr. J. 102, 1510–1527 (1991).

    Article  ADS  Google Scholar 

  17. Ward, W. R. & Rudy, D. J. Icarus 94, 160–164 (1991).

    Article  ADS  Google Scholar 

  18. Laskar, J. Nature 338, 237–238 (1989).

    Article  ADS  Google Scholar 

  19. Davies, M. E. et al. Celest. Mech. 53, 377–379 (1992).

    Article  ADS  Google Scholar 

  20. Laskar, J., Joutel, F. & Boudin, F. Astr. Astrophys. (in the press).

  21. Ward, W. R. Icarus 50, 444–448 (1982).

    Article  ADS  Google Scholar 

  22. Korycansky, D. G., Bodenheimer, P. & Pollack, J. B. Icarus 92, 234–251 (1991).

    Article  ADS  Google Scholar 

  23. Goldreich, P. Rev. Geophys. 4, 411–439 (1966).

    Article  ADS  Google Scholar 

  24. Murray, C. A. Vectorial Astrometry (Hilger, Bristol, 1983).

    Google Scholar 

  25. Laskar, J. in Chaos, Resonance and Collective Dynamical Phenomena in the Solar System (ed. Ferraz-Mello, S.) 1–16 (Kluwer, Dordrecht, 1992).

    Google Scholar 

  26. Laskar, J., Quinn, T. & Tremaine, S. Icarus 95, 148–152 (1992).

    Article  ADS  Google Scholar 

  27. Sussman, G. & Wisdom, J. Science 257, 56–62 (1992).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  28. Colombo, G. Astr. J. 71, 891–896 (1966).

    Article  ADS  Google Scholar 

  29. Henrard, J. & Murigande, C. Celest. Mech. 40, 345–366 (1987).

    Article  ADS  Google Scholar 

  30. Laskar, J., Froeschlé, C. & Celletti, A. Physica D 56, 253–269 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  31. Laskar, J. Physica D (in the press).

  32. Peale, S. J. Astr. J. 79, 722–744 (1974).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laskar, J., Robutel, P. The chaotic obliquity of the planets. Nature 361, 608–612 (1993). https://doi.org/10.1038/361608a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361608a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing