Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reduction of Fe(III) in sediments by sulphate-reducing bacteria

Abstract

REDUCTION of ferric iron (Fe(III)) to ferrous iron (Fe(II)) is one of the most important geochemical reactions in anaerobic aquatic sediments because of its many consequences for the organic and inorganic chemistry of these environments1. In marine environments, sulphate-reducing bacteria produce H2S, which can reduce iron oxyhydroxides2 to form iron sulphides. The presence of siderite (FeCO3) in marine sediments is anomalous, however, as it is unstable in the presence of H2S. Previous work3,4 has suggested a bacterial origin of siderite. Here we describe geochemical and microbiological studies which suggest that contemporary formation of siderite concretions in a salt-marsh sediment results from the activity of sulphate-reducing bacteria. We find that, instead of reducing Fe(III) indirectly through the production of sulphide, some of these bacteria can reduce Fe(III) directly through an enzymatic mechanism, producing siderite rather than iron sulphides. Sulphate-reducing bacteria may thus be an important and previously unrecognized agent for Fe(III) reduction in aquatic sediments and ground waters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lovley, D. R. Microbiol. Rev. 55, 259–287 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Berner, R. A. Geochim. cosmochim. Acta 48, 605–615 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Canfield, D. E. Geochim. cosmochim. Acta 53, 619–632 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Sørensen, J. Appl. envir. Microbiol. 43, 319–324 (1982).

    Google Scholar 

  5. Pye, K., Dickson, J. A. D., Schiavon, N., Coleman, M. L. & Cox, M. Sedimentology 37, 325–343 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Berner, R. A. Geochim. cosmochim. Acta 32, 477–483 (1968).

    Article  ADS  CAS  Google Scholar 

  7. Gautier, D. L. J. sedim. Petrol. 52, 859–871 (1982).

    CAS  Google Scholar 

  8. Irwin, H., Curtis, C. & Coleman, M. Nature 269, 209–213 (1977).

    Article  ADS  CAS  Google Scholar 

  9. White, D. C. Adv. Limnol. 31, 1–18 (1988).

    Google Scholar 

  10. White, D. C., Bobbie, R. J., King, J. D., Nickels, J. & Amoe, P. in Methodology for Biomass Determinations and Microbial Activities in Sediments. ASTM STP 673 (eds Litchfield, C. D. & Seyfried, P. L.) 87–103 (American Society for Testing and Materials, Philadelphia, 1979).

    Book  Google Scholar 

  11. Balkwill, D. L., Leach, F. R., Wilson, J. T., McNabb, J. F. & White, D. C. Microb. Ecol. 16, 73–84 (1988).

    Article  CAS  Google Scholar 

  12. Findlay, R. H., Trexler, M. B., Guckert, J. B. & White, D. C. Mar. Ecol. Prog. Ser. 61, 121–133 (1990).

    Article  ADS  Google Scholar 

  13. Vestal, J. R. & White, D. C. Bioscience 39, 535–541 (1989).

    Article  CAS  Google Scholar 

  14. Hedrick, D. B., Guckert, J. B. & White, D. C. J. Lipid Res. 32, 656–666 (1991).

    Google Scholar 

  15. Lovley, D. R. et al. Arch. Microbiol. (in the press).

  16. Hedrick, D. B. & White, D. C. J. microbiol. Methods 5, 243–254 (1986).

    Article  CAS  Google Scholar 

  17. Dowling, N. J. E., Widdel, F. & White, D. C. J. gen. Microbiol. 132, 1815–1825 (1986).

    CAS  Google Scholar 

  18. Edlund, A., Nichols, P. D., Roffey, R. & White, D. C. J. Lipid Res. 26, 982–988 (1985).

    CAS  PubMed  Google Scholar 

  19. Cord-Ruwisch, R. Seitz, H.-J. & Conrad, R. Arch. Microbiol. 149, 350–357 (1988).

    Article  CAS  Google Scholar 

  20. Chapelle, F. H. & Lovley, D. R. Groundwater 30, 29–36 (1992).

    Article  CAS  Google Scholar 

  21. Murphy, E. M. et al. Water Resources Res. 28, 723–740 (1992).

    Article  ADS  CAS  Google Scholar 

  22. Lovley, D. R., Chapelle, F. H. & Phillips, E. J. P. Geology 18, 954–957 (1990).

    Article  ADS  CAS  Google Scholar 

  23. Guckert, J. B., Hood, M. A. & White, D. C. Appl. envir. Microbiol. 52, 794–801 (1986).

    CAS  Google Scholar 

  24. Lovley, D. R. & Phillips, E. J. P. Appl. envir. Microbiol. 51, 683–689 (1986).

    CAS  Google Scholar 

  25. Lovley, D. R. & Phillips, E. J. P. Appl. envir. Microbiol. 54, 1472–1480 (1988).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coleman, M., Hedrick, D., Lovley, D. et al. Reduction of Fe(III) in sediments by sulphate-reducing bacteria. Nature 361, 436–438 (1993). https://doi.org/10.1038/361436a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361436a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing