Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Group II intron splicing in vivo by first-step hydrolysis

Abstract

Group I, group II and spliceosomal introns splice by two sequential transesterification reactions1. For both spliceosomal and group II introns, the first-step reaction occurs by nucleophilic attack on the 5′ splice junction by the 2′ hydroxyl of an internal adenosine, forming a 2′–5′ phosphodiester branch in the intron. The second reaction joins the two exons with a 3′–5′ phosphodiester bond and releases intron lariat. In vitro, group II introns can self-splice by an efficient alternative pathway in which the first-step reaction occurs by hydrolysis. The resulting linear splicing intermediate participates in normal second-step reactions, forming spliced exon and linear intron RNAs2,3. Here we show that the group II intron first-step hydrolysis reaction occurs in vivo in place of transesterification in the mitochondria of yeast strains containing branch-site mutations. As expected, the mutations block branching, but surprisingly still allow accurate splicing. This hydrolysis pathway may have been a step in the evolution of splicing mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Group II intron splicing pathways and domain-6 mutants.
Figure 2: RNA blots showing splicing phenotypes of mutant and control strains.
Figure 3: Reverse-transcriptase primer extension analysis of IVS-E2 RNA.

Similar content being viewed by others

References

  1. Cech, T. R. in The RNA World (eds Gesteland, R. F. & Atkins, J. F.) 239–270 (Cold Spring Harbor Laboratory Press, NY, 1993).

    Google Scholar 

  2. Jarrell, K. A., Peebles, C. L., Dietrich, R. C., Romiti, S. L. & Perlman, P. S. Group II intron self-splicing: alternative reaction conditions yield novel products. J. Biol. Chem. 263, 3432–3439 (1988).

    CAS  PubMed  Google Scholar 

  3. Daniels, D., Michels, W. J. & Pyle, A. M. Two competing pathways for self-splicing by group II introns: a quantitative analysis of in-vitro reaction rates and products. J. Mol. Biol. 256, 31–49 (1996).

    Article  CAS  Google Scholar 

  4. Michel, F. & Ferat, J. L. Structure and activities of group II introns. Annu. Rev. Biochem. 64, 435–461 (1995).

    Article  CAS  Google Scholar 

  5. Liu, Q.et al. Branch-site selection in a group II intron mediated by active recognition of the adenine amino group and steric exclusion of non-adenine functionalities. J. Mol. Biol. 267, 163–171 (1997).

    Article  CAS  Google Scholar 

  6. Arnberg, A., Ommen, G. V., Grivell, L., Bruggen, E. V. & Borst, P. Some yeast mitochrondrial RNAs are circular. Cell 19, 313–319 (1980).

    Article  CAS  Google Scholar 

  7. Hensgens, L. A. M.et al. Variation, transcription, and circular RNAs of the mitochondrial gene for subunit 1 of cytochrome c oxidase. J. Mol. Biol. 164, 35–58 (1983).

    Article  CAS  Google Scholar 

  8. Contrad-Webb, H., Perlman, P. S., Zhu, H. & Butow, R. A. The nuclear SUV3-1 mutation affects a variety of post-transcriptional processes in yeast mitochondria. Nucleic Acids Res. 18, 1369–1376 (1990).

    Article  Google Scholar 

  9. Margossian, S., Li, H., Zassenhaus, H. & Butow, R. The DExH box protein Suv3p is a component of a yeast mitochondrial 3′-to-5′ exoribonuclease that suppresses group I intron toxicity. Cell 84, 199–209 (1996).

    Article  CAS  Google Scholar 

  10. Margossian, S. & Butow, R. RNA turnover and the control of mitochondrial gene expression. Trends Biochem. Sci. 21, 392–396 (1996).

    Article  CAS  Google Scholar 

  11. Peebles, C. L., Belcher, S. M., Zhang, M., Dietrich, R. C. & Perlman, P. S. Mutation of the conserved first nucleotide of a group II intron from yeast mitochondrial DNA reduces the rate but allows accurate splicing. J. Biol. Chem. 268, 11929–11938 (1993).

    CAS  PubMed  Google Scholar 

  12. Boulanger, S. C.et al. Length changes in the joining segment between domains 5 and 6 of a group II intron inhibit self-splicing and alter 3′ splice site selection. Mol. Cell. Biol. 16, 5896–5904 (1996).

    Article  CAS  Google Scholar 

  13. Costanzo, M. C. & Fox, T. D. Control of mitochondrial gene expression in Saccharomyces cerevisiae. Annu. Rev. Genet. 24, 91–113 (1990).

    Article  CAS  Google Scholar 

  14. Jacquier, A. & Jacquesson-Breuleux, N. Splice site selection and role of the lariat in a group II intron. J. Mol. Biol. 219, 415–428 (1991).

    Article  CAS  Google Scholar 

  15. Chanfreau, G. & Jacquier, A. Interaction of intronic boundaries is required for the second splicing step efficiency of a group II introns. EMBO J. 12, 5173–5180 (1993).

    Article  CAS  Google Scholar 

  16. Chapman, K. B. & Boeke, J. D. Isolation and characterization of the gene encoding yeast debranching enzyme. Cell 65, 483–492 (1991).

    Article  CAS  Google Scholar 

  17. Michel, F., Umesono, K. & Ozeki, H. Comparative and functional anatomy of group II catalytic introns—a review. Gene 82, 5–30 (1989).

    Article  CAS  Google Scholar 

  18. Eskes, R., Yang, J., Lambowitz, A. & Perlman, P. Mobility of yeast mitochondrial group II introns: engineering a new site specificity and retrohoming via full reverse splicing. Cell 88, 865–874 (1997).

    Article  CAS  Google Scholar 

  19. Zimmerly, S.et al. Agroup II intron RNA is a catalytic component of a DNA endonuclease involved in intron mobility. Cell 83, 529–538 (1995).

    Article  CAS  Google Scholar 

  20. Butow, R. A., Belcher, S. M., Moran, J. V., Henke, R. M. & Perlman, P. S. Transformation of S. cerevisiae mitochondria using the biolistic gun. Methods Enzymol. 264, 265–278 (1995).

    Article  Google Scholar 

  21. Boulanger, S. C.et al. Studies of point mutants define essential nucleotides in the domain 5 substructure of a group II intron. Mol. Cell Biol. 15, 4479–4488 (1995).

    Article  CAS  Google Scholar 

  22. Moran, J. V.et al. Splicing defective mutants of the COXI gene of yeast mitochondrial DNA: Initial definition of the maturase domain of the group II intron AI2. Nucleic Acids Res. 22, 2057–2064 (1994).

    Article  CAS  Google Scholar 

  23. Goda, S. K. & Minton, N. P. Asimple procedure for gel electrophoresis and Northern blotting of RNA. Nucleic Acids Res. 23, 3357–3358 (1995).

    Article  CAS  Google Scholar 

  24. Peebles, C. L.et al. Aself-splicing RNA excises an intron lariat. Cell 44, 213–223 (1986).

    Article  CAS  Google Scholar 

  25. Podar, M., Dib-Hajj, S. & Perlman, P. S. AUV-induced, Mg2+-dependent crosslink traps an active form of domain 3 of a self-splicing group II intron. RNA 1, 828–840 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Perlman, P. & Podar, M. Reactions catalyzed by group II introns in vitro. Methods Enzymol. 264, 66–86 (1995).

    Article  Google Scholar 

  27. Bonitz, S. G., Coruzzi, G., Thalenfield, B. E., Tzagoloff, A. & Macino, G. Assembly of the mitochondrial membrane system. Structure and nucleotide sequence of the gene coding for subunit I of cytochrome oxidase. J. Biol. Chem. 255, 11927–11941 (1980).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants to P.S.P. and A.M.P. M.P. was a fellow of the Robert A. Welch Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip S. Perlman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Podar, M., Chu, V., Pyle, A. et al. Group II intron splicing in vivo by first-step hydrolysis. Nature 391, 915–918 (1998). https://doi.org/10.1038/36142

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/36142

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing