Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Detection of crustal deformation from the Landers earthquake sequence using continuous geodetic measurements

Abstract

THE measurement of crustal motions in technically active regions is being performed increasingly by the satellite-based Global Positioning System (GPS)1,2, which offers considerable advantages over conventional geodetic techniques3,4. Continuously operating GPS arrays with ground-based receivers spaced tens of kilometres apart have been established in central Japan5,6 and southern California to monitor the spatial and temporal details of crustal deformation. Here we report the first measurements for a major earthquake by a continuously operating GPS network, the Permanent GPS Geodetic Array (PGGA)7–9 in southern California. The Landers (magnitude Afw of 7.3) and Big Bear (Mw 6.2) earthquakes of 28 June 1992 were monitored by daily observations. Ten weeks of measurements, centred on the earthquake events, indicate significant coseismic motion at all PGGA sites, significant post-seismic motion at one site for two weeks after the earthquakes, and no significant preseismic motion. These measurements demonstrate the potential of GPS monitoring for precise detection of precursory and aftershock seismic deformation in the near and far field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dixon, T. H. A. Rev. Geophys. 29, 249–276 (1991).

    Article  ADS  Google Scholar 

  2. Hager, B. H., King, R. W. & Murray, M. H. Rev. Earth planet. Sci. 19, 351–382 (1991).

    Article  ADS  Google Scholar 

  3. Sauber, J., Thatcher, W. & Solomon, S. C. J. geophys. Res. 91, 12683–12693 (1986).

    Article  ADS  Google Scholar 

  4. Savage, J. Geophys. Res. Lett. 17, 2113–2116 (1990).

    Article  ADS  Google Scholar 

  5. Shimada, S. et al. Nature 343, 631–633 (1990).

    Article  ADS  Google Scholar 

  6. Shimada, S. & Bock, Y. J. geophys. Res. 97, 12437–12455 (1992).

    Article  ADS  Google Scholar 

  7. Bock, Y. & Leppard, N. (eds) Global Positioning System: An Overview 40–56 (Springer, New York, 1990).

    Google Scholar 

  8. Lindqwister, U., Blewitt, G., Zumberge, J. & Webb, F. Geophys. Res. Lett. 18, 1135–1138 (1991).

    Article  ADS  Google Scholar 

  9. Bock, Y. GPS World (Aster, Eugene, Oregon, 1991).

    Google Scholar 

  10. Minster, J.-B., Hager, B. H., Prescott, W. H. & Schutz, R. E. International Global Network of Fiducial Stations (National Res. Council, National Academy Press, Washington DC, 1991).

    Google Scholar 

  11. International Earth Rotation Service Bulletins B 51–54 (Observatoire de Paris, 1992); Bulletins A Vol. V (U.S. Naval Observatory, 1992).

  12. Herring, T. H., Davis, J. L. & Shapiro, I. I. J. geophys. Res. 95, 12561–12583 (1990).

    Article  ADS  Google Scholar 

  13. Beutler, G. Eos 73, 134 (1992).

    Article  Google Scholar 

  14. Scholz, C. H. The Mechanics of Earthquakes and Faulting (Cambridge Univ. Press, 1990).

    Google Scholar 

  15. Blewitt, G. et al. Nature 361, 340–342 (1993).

    Article  ADS  Google Scholar 

  16. Blewitt, G. J. geophys. Res. 94, 10187–10203 (1989).

    Article  ADS  Google Scholar 

  17. Blewitt, G. Geophys. Res. Lett. 17, 199–202 (1990).

    Article  ADS  Google Scholar 

  18. Dong, D. & Bock, Y. J. geophys. Res. 94, 3949–3966 (1989).

    Article  ADS  Google Scholar 

  19. Mansinha, L. & Smylie, D. E. Bull. seism. Soc. Am. 61, 1433–1440 (1971).

    Google Scholar 

  20. Okada, Y. Bull. seism. Soc. Am. 75, 1135–1154 (1985).

    Google Scholar 

  21. Landers Earthquake Response Team Science (submitted).

  22. Kanamori, H., Thio, H.-K., Dreger, D., Hauksson, E. & Heaton, T. Geophys. Res. Lett. 19, 2267–2270 (1992).

    Article  ADS  Google Scholar 

  23. Hudnut, K. W. et al. Eos 73, 365 (1992).

    Google Scholar 

  24. Rybicki, K. Bull. Seism. Soc. Am. 61, 79 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bock, Y., Agnew, D., Fang, P. et al. Detection of crustal deformation from the Landers earthquake sequence using continuous geodetic measurements. Nature 361, 337–340 (1993). https://doi.org/10.1038/361337a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361337a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing