Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge

Abstract

PLANT growth in arctic tundra is strongly nitrogen limited despite large pools of soil organic nitrogen1–4. Here we report that fieldcollected roots of Eriophorum vaginatum, an arctic sedge, rapidly absorb free amino acids, accounting for at least 60% of the nitrogen absorbed by this species in the field. In solution culture, Eriophorum accumulates more nitrogen and biomass when supplied with amino acids than when grown on inorganic nitrogen, whereas Hordeum vulgare (a cereal adapted to mineral soils) grows least when nitrogen is supplied as amino acids. To our knowledge, this is the first documentation of preferential absorption and use of organic nitrogen by a non-mycorrhizal vascular plant. The direct absorption of amino acids by Eriophorum short-circuits the bottleneck in arctic nitrogen cycles imposd by temperature-limited mineralization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Shaver, G. R., Nadelhoffer, K. J. & Giblin, A. E. in Quantitative Methods in Landscape Ecology (eds Turner, M. G. & Gardner, R. H.) 105–125 (Springer, New York, 1990).

    Google Scholar 

  2. Kielland, K. Processes Controlling Nitrogen Release and Turnover in Arctic Tundra thesis, Univ. Alaska (1990).

  3. Haag, R. W. Can. J. Bot. 52, 103–116 (1974).

    Article  CAS  Google Scholar 

  4. Shaver, G. R., Chapin III, F. S. & Gartner, B. L. J. Ecol. 74, 257–278 (1986).

    Article  Google Scholar 

  5. Stribley, D. P. & Read, D. J. New Phytol. 86, 365–371 (1980).

    Article  CAS  Google Scholar 

  6. Bajwa, R. & Read, D. J. New Phytol. 101, 459–467 (1985).

    Article  CAS  Google Scholar 

  7. Read, D. J. Experientia 47, 376–391 (1991).

    Article  Google Scholar 

  8. Abuzinadah, R. A. & Read, D. J. New Phytol. 103, 481–493 (1986).

    Article  CAS  Google Scholar 

  9. Abuzinadah, R. A. & Read, D. J. New Phytol. 112, 61–68 (1989).

    Article  CAS  Google Scholar 

  10. Bliss, L. C. & Matveyeva, N. in Arctic Ecosystems in a Changing Climate (eds Chapin III, F. S., Jefferies, R. L., Reynolds, J. F., Shaver, G. R. & Svoboda, J.) 59–89 (Academic, San Diego, 1992).

    Book  Google Scholar 

  11. Haselwandter, K. & Read, D. J. Oecologia 53, 352–354 (1982).

    Article  ADS  CAS  Google Scholar 

  12. Chapin III, F. S., Fetcher, N., Kielland, K., Everett, K. R. & Linkins, A. E. Ecology 69, 693–702 (1988).

    Article  Google Scholar 

  13. Kinraide, T. B. Plant Physiol. 68, 1327–1333 (1981).

    Article  CAS  Google Scholar 

  14. Wyser, R. E. & Komar, E. Plant Physiol. 76, 865–870 (1984).

    Article  Google Scholar 

  15. Chapin III, F. S. & Bloom, A. J. Oikos 27, 111–121 (1976).

    Article  Google Scholar 

  16. Chapin III, F. S. & Tryon, P. R. Holarct Ecol. 5, 164–171 (1982).

    Google Scholar 

  17. Marion, G. M. & Kummerow, J. Holarct. Ecol. 13, 50–55 (1990).

    Google Scholar 

  18. Koch, G. W., Bloom, A. J. & Chapin III, F. S. Oecologia 88, 570–573 (1991).

    Article  ADS  Google Scholar 

  19. Stewart, G. R., Lee, J. A. & Orebamjo, T. O. New Phytol. 72, 539–546 (1973).

    Article  CAS  Google Scholar 

  20. Nadelhoffer, K. G., Gilbin, A. E., Shaver, G. R. & Laundre, J. A. Ecology 72, 242–253 (1991).

    Article  Google Scholar 

  21. Haynes, R. J. & Goh, K. M. Biol. Rev. 53, 465–510 (1978).

    Article  CAS  Google Scholar 

  22. Chapin III, F. S., Bloom, A. J., Field, C. B. & Waring, R. H. BioScience 37, 49–57 (1987).

    Article  Google Scholar 

  23. Kroehler, C. J. & Linkins, A. E. Oecologia 85, 424–428 (1991).

    Article  ADS  CAS  Google Scholar 

  24. Chapin III, F. S. & Shaver, G. R. Funct. Ecol. 3, 73–80 (1989).

    Article  Google Scholar 

  25. Jones, B. N., Paabo, S. & Stein, S. J. liq. Chromatogr. 4, 565–586 (1981).

    Article  CAS  Google Scholar 

  26. Epstein, E., Schmid, W. E. & Rains, D. W. Plant Cell Physiol. 4, 79–84 (1963).

    Article  CAS  Google Scholar 

  27. Wood, W. B., Wilson, J. H., Benbow, R. M. & Hood, L. E. Biochemistry 2nd edn (Benjamin/Cummings, Menlo Park, 1981).

    Google Scholar 

  28. Kedrowski, R. A. J. Plant Nutr. 6, 989–1011 (1983).

    Article  CAS  Google Scholar 

  29. Collins, C. H. & Lyne, P. M. Microbiological Methods 5th edn (Butterworths, London, 1984).

    Google Scholar 

  30. Bloom, A. J. & Chapin III, F. S. Plant Physiol. 68, 1064–1067 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chapin, F., Moilanen, L. & Kielland, K. Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature 361, 150–153 (1993). https://doi.org/10.1038/361150a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361150a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing