Review Article | Published:

A synaptic model of memory: long-term potentiation in the hippocampus

Nature volume 361, pages 3139 (07 January 1993) | Download Citation

Subjects

Abstract

Long-term potentiation of synaptic transmission in the hippocampus is the primary experimental model for investigating the synaptic basis of learning and memory in vertebrates. The best understood form of long-term potentiation is induced by the activation of the N-methyl-d-aspartate receptor complex. This subtype of glutamate receptor endows long-term potentiation with Hebbian characteristics, and allows electrical events at the postsynaptic membrane to be transduced into chemical signals which, in turn, are thought to activate both pre- and postsynaptic mechanisms to generate a persistent increase in synaptic strength.

  • Subscribe to Nature for full access:

    $199

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    The Organization of Behaviour (Wiley, New York, 1949).

  2. 2.

    Conditioned Reflexes and Neuron Organisation (Cambridge Univ. Press, Cambridge, 1948).

  3. 3.

    & J. Physiol., Lond. 232, 331–356 (1973).

  4. 4.

    & J. Physiol., London. 232, 357–374 (1973).

  5. 5.

    , & Phil. Trans. R. Soc. 329, 187–204 (1990).

  6. 6.

    & Hippocampus 2, 39–48 (1992).

  7. 7.

    , & Brain Res. 368, 347–350 (1986).

  8. 8.

    & Neurosci. Lett. 69, 244–248 (1986).

  9. 9.

    , , & Hippocampus 1, 181–192 (1991).

  10. 10.

    , & Brain Res. 157, 277–294 (1978).

  11. 11.

    & J. Physiol., Lond. 400, 321–334 (1988).

  12. 12.

    Neuron 6, 53–60 (1991).

  13. 13.

    & Brain Res. 175, 233–245 (1979).

  14. 14.

    , , & Nature 266, 736–737 (1977).

  15. 15.

    , & Nature 266, 737–739 (1977).

  16. 16.

    , & Proc. natn. Acad Sci. U.S.A. 83, 5326–5330 (1986).

  17. 17.

    , , & Acta physiol scand. 126, 317–319 (1986).

  18. 18.

    , & Science 232, 988–990 (1986).

  19. 19.

    Science 252, 722–724 (1991).

  20. 20.

    & Nature 320, 529–530 (1986).

  21. 21.

    & J. Physiol., Lond. 399, 247–266 (1988).

  22. 22.

    , & J. Physiol., Lond. 399, 283–300 (1988).

  23. 23.

    , , & Nature 349, 609–611 (1991).

  24. 24.

    , & J. Physiol. Lond. 334, 33–46 (1983).

  25. 25.

    , & Neurosci. Lett. 80, 111–114 (1987).

  26. 26.

    , & Neurosci. Lett. 108, 261–266 (1990).

  27. 27.

    , & Nature 334, 250–252 (1988).

  28. 28.

    , & Neurosci. Lett. 105, 205–210 (1989).

  29. 29.

    , , & Science 255, 730–733 (1992).

  30. 30.

    , & Science 257, 1273–1276 (1992).

  31. 31.

    & Neurosci. Lett. 98, 166–171 (1989).

  32. 32.

    , & Neurosci. Lett. 122, 187–190 (1991).

  33. 33.

    , & Eur. J. Pharmac. 197, 231–232 (1991).

  34. 34.

    et al. Int. Acad. Biomed. Drug Res. 2, 41–49 (1991).

  35. 35.

    & Neurosci. Lett. 138, 119–122 (1992).

  36. 36.

    & Neuropharmacology 32, 1–9 (1993).

  37. 37.

    , , , & Nature 305, 719–721 (1983).

  38. 38.

    , , , & Nature 321, 519–522 (1986).

  39. 39.

    & Nature 325, 522–525 (1987).

  40. 40.

    , & Nature 354, 76–80 (1991).

  41. 41.

    & Nature 345, 807–810 (1990).

  42. 42.

    & Nature 354, 73–76 (1991).

  43. 43.

    , & Neuron 9, 121–128 (1992).

  44. 44.

    & in Excitatory Amino Acids and Second Messenger Systems (eds Teichberg, Turski, V. I.) 43–53 (Springer, Berlin, 1992).

  45. 45.

    , & Neurosci. Lett. 98, 172–178 (1989).

  46. 46.

    & Neurosci. Lett. 139, 197–200 (1992).

  47. 47.

    & A. Rev. Physiol. 54, 507–536 (1992).

  48. 48.

    , , & Science 242, 81–84 (1988).

  49. 49.

    , , & Trends Neurosci. 12, 444–450 (1989).

  50. 50.

    & Brain Res. 208, 436–441 (1981).

  51. 51.

    , & Nature 297, 496–498 (1982).

  52. 52.

    , , & J. Physiol., Lond. 377, 391–408 (1986).

  53. 53.

    , , & Neuroscience 28, 387–392 (1989).

  54. 54.

    , & Adv. exp. med. Biol. 268, 269–278 (1990).

  55. 55.

    , & Brain Res. 364, 39–44 (1986).

  56. 56.

    J. Physiol., Lond. 324, 249–262 (1982).

  57. 57.

    , & Neuron 1, 911–917 (1988).

  58. 58.

    & Proc. natn. Acad. Sci. U.S.A. 85, 9346–9350 (1988).

  59. 59.

    , , , & Nature 349, 156–158 (1991).

  60. 60.

    et al. Eur. J. Neurosci. 3, 850–854 (1991).

  61. 61.

    , & J. Neurophysiol. 67, 1009–1013 (1992).

  62. 62.

    , & Eur. J. Neurosci. 4, 681–690 (1992).

  63. 63.

    , & Nature 263, 151–153 (1976).

  64. 64.

    & J. Neurosci. 8, 1632–1644 (1988).

  65. 65.

    , , & Nature 338, 500–503 (1989).

  66. 66.

    , , & Nature 341, 739–742 (1989).

  67. 67.

    Neuroscience 10, 1051–1069 (1983).

  68. 68.

    & Nature 346, 724–729 (1990).

  69. 69.

    & Nature 346, 177–180 (1990).

  70. 70.

    , & Expl Brain Res. 89, 288–299 (1992).

  71. 71.

    & Hippocampus 1, 79–91 (1991).

  72. 72.

    & Nature 357, 240–244 (1992).

  73. 73.

    , , & Nature 360, 70–73 (1992).

  74. 74.

    , & Nature 355, 50–55 (1992).

  75. 75.

    & Nature 357, 134–139 (1992).

  76. 76.

    , & Brain Res. 505, 233–238 (1989).

  77. 77.

    & Neuron 5, 237–246 (1990).

  78. 78.

    , , & Brain Res. 321, 381–385 (1984).

  79. 79.

    , , , & Science 231, 587–589 (1986).

  80. 80.

    , & J. biol. Chem. 266, 24253–24256 (1991).

  81. 81.

    , , & Brain Res. 436, 177–183 (1987).

  82. 82.

    , , & Brain Res. 440, 305–314 (1988).

  83. 83.

    , & Nature 335, 821–824 (1988).

  84. 84.

    et al. Nature 340, 554–557 (1989).

  85. 85.

    , , , & Eur. J. Neurosci. 2, 481–486 (1990).

  86. 86.

    & Proc. natn. Acad. Sci. U.S.A. 89, 2576–2580 (1992).

  87. 87.

    , , & Proc. natn. Acad. Sci. U.S.A. 87, 4073–4077 (1990).

  88. 88.

    , & Science 245, 862–866 (1989).

  89. 89.

    , & Neuroscience 49, 819–827 (1992).

  90. 90.

    et al. Nature 328, 426–429 (1987).

  91. 91.

    , & Nature 321, 175–177 (1986).

  92. 92.

    , , & Proc. natn. Acad. Sci. U.S.A. 85, 6997–7000 (1988).

  93. 93.

    , & Neurosci. Lett. 85, 77–81 (1988).

  94. 94.

    , & Neuropharmacology 23, 625–631 (1984).

  95. 95.

    , , & Brain Res. 461, 388–392 (1988).

  96. 96.

    , & Neurosci. Lett. 121, 119–121 (1991).

  97. 97.

    , , & Science 257, 201–206 (1992).

  98. 98.

    & Proc. natn. Acad. Sci. U.S.A. 85, 5320–5324 (1988).

  99. 99.

    & Proc. natn. Acad. Sci. U.S.A. 88, 4756–4760 (1991).

  100. 100.

    , , & Proc. natn. Acad. Sci. U.S.A. 88, 6467–6471 (1991).

  101. 101.

    , & Nature 353, 558–560 (1991).

  102. 102.

    & Science 253, 912–914 (1991).

  103. 103.

    , & Brain Res. Bull. 13, 39–42 (1984).

  104. 104.

    , , , & Neuroscience 28, 519–526 (1989).

  105. 105.

    , , , & Neurosci. Lett. 97, 135–139 (1989).

  106. 106.

    , , , & J. Neurosci. 13(4) (in the press).

  107. 107.

    , , & Brain Res. 521, 247–253 (1990).

  108. 108.

    , & Molec. Neurobiol. 5, 297–314 (1991).

  109. 109.

    , , & Nature 340, 474–476 (1989).

  110. 110.

    et al. Neuron 4, 603–614 (1990).

  111. 111.

    et al. Neurosci. Lett. 101, 274–280 (1989).

  112. 112.

    , , , & Brain Res. 560, 346–349 (1991).

  113. 113.

    , & Neuron 9, 539–548 (1992).

  114. 114.

    , , & Science 253, 1135–1138 (1991).

  115. 115.

    , & Science 253, 1132–1135 (1991).

  116. 116.

    et al. Science 249, 1580–1585 (1990).

  117. 117.

    , , & Cell 67, 11–19 (1992).

  118. 118.

    , , & J. Physiol., Lond. 424, 533–543 (1990).

  119. 119.

    & Proc. natn. Acad. Sci. U.S.A. 88, 10936–10940 (1991).

  120. 120.

    , , & Science 254, 288–290 (1991).

  121. 121.

    , & Psychobiology 18, 377–381 (1990).

  122. 122.

    , , & Synapse 11, 342–345 (1992).

  123. 123.

    , & J. Physiol., Lond. 449, 705–718 (1992).

  124. 124.

    & Nature 356, 521–523 (1992).

  125. 125.

    , , & Nature 355, 722–725 (1992).

  126. 126.

    & J. Physiol., Lond. 447, 513–533 (1992).

  127. 127.

    & in The Neurobiology of Learning and Memory (eds McGaugh, J. L. & Lynch, G.) (Guilford, New York, 1984).

  128. 128.

    , & Science 212, 1148–1151 (1981).

  129. 129.

    , , & Brain Res. 473, 51–59 (1988).

  130. 130.

    , & Neuroscience 47, 265–272 (1992).

  131. 131.

    , , , & Nature 336, 68–70 (1988).

  132. 132.

    , , & Cold Spring Harb. Symp. quant. Biol. 55, 119–129 (1990).

  133. 133.

    , & Neuroscience 45, 379–389 (1991).

  134. 134.

    , & Neurosci. Lett. 100, 141–146 (1989).

  135. 135.

    & Neurosci. Lett. 107, 301–306 (1989).

  136. 136.

    , , & Nature 342, 918–920 (1989).

  137. 137.

    & Eur. J. Neurosci. 4, 411–419 (1992).

  138. 138.

    , , & Neuron 9, 1211–1216 (1992).

  139. 139.

    , & Nature 336, 385–388 (1988).

  140. 140.

    , , , & Eur. J. Pharmacol. 199, 379–381 (1991).

  141. 141.

    & Science 254, 1503–1506 (1991).

  142. 142.

    , , & Proc. natn. Acad. Sci. U.S.A. 88, 11285–11289 (1991).

  143. 143.

    , & Neuron 8, 211–216 (1992).

  144. 144.

    & Neuron 8, 3–11 (1992).

  145. 145.

    & J. Neurophysiol. 68, 639–642 (1992).

  146. 146.

    Expl. Physiol. 77, 771–797 (1992).

  147. 147.

    & J. Physiol., Lond 444, 687–701 (1991).

  148. 148.

    , & Cell Calcium 13, 293–301 (1992).

  149. 149.

    & J. Neurochem. 56, 113–118 (1991).

  150. 150.

    & Neuron 7, 451–459 (1991).

  151. 151.

    & Brain Res. 369, 405–408 (1986).

  152. 152.

    & J. Neurochem. 55, 215–221 (1990).

  153. 153.

    , , & Brain Res. 458, 142–146 (1988).

  154. 154.

    , , & Neuron 8, 843–848 (1992).

  155. 155.

    & Neuron 8, 757–765 (1992).

  156. 156.

    & Synapse 5, 139–143 (1990).

  157. 157.

    , & Brain Res. 566, 77–88 (1991).

  158. 158.

    , & Neuroreport 3, 477–480 (1992).

  159. 159.

    , , & Molec. Brain Res. 8, 267–274 (1990).

  160. 160.

    , , , & J. Physiol., Lond. 302, 463–482 (1980).

  161. 161.

    , & J. Physiol., Lond. 363, 335–349 (1985).

  162. 162.

    , & Proc. natn. Acad. Sci. U.S.A. 86, 8113–8117 (1989).

  163. 163.

    & Neurosci. Lett. 70, 132–137 (1986).

  164. 164.

    , , & A. Rev. Physiol. 54, 489–505 (1992).

  165. 165.

    & Nature 347, 477–479 (1990).

  166. 166.

    , & Neuroscience 7, 1411–1416 (1982).

  167. 167.

    & Nature 349, 67–69 (1991).

  168. 168.

    Expl Brain Res. 84, 680–684 (1991).

  169. 169.

    & Proc. R. Soc. B236, 373–384 (1989).

  170. 170.

    , & J. Physiol. Lond. 414, 317–336 (1989).

  171. 171.

    & J. Physiol., Lond. 363, 35–59 (1985).

  172. 172.

    , , & Nature 346, 565–567 (1990).

  173. 173.

    , & J. Physiol., Lond. 399, 301–312 (1988).

  174. 174.

    , & Nature 360, 163–166 (1992).

Download references

Author information

Affiliations

  1. T. V. P. Bliss is at the Division of Neurophysiology and Neuropharmacology, National Institute of Medical Research, Mill Hill, London NW71AA, UK; G. L Collingridge is at the Department of Pharmacology, The University of Birmingham, Birmingham B15 2TT, UK.

    • T. V. P. Bliss
    •  & G. L. Collingridge

Authors

  1. Search for T. V. P. Bliss in:

  2. Search for G. L. Collingridge in:

About this article

Publication history

Published

DOI

https://doi.org/10.1038/361031a0

Rights and permissions

To obtain permission to re-use content from this article visit RightsLink.

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.