Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Brain-derived neurotrophic factor rescues developing avian motoneurons from cell death

Abstract

DURING normal vertebrate development, about half of spinal motoneurons are lost by a process of naturally occurring or programmed cell death1,2. Additional developing motoneurons degenerate after the removal of targets3,4 or afferents5. Naturally occurring motoneuron death as well as motoneuron death after loss of targets or after axotomy can be prevented by in vivo treatment with putative target (muscle) derived or other neurotrophic agents6–8. Motoneurons can also be prevented from dying in vitro9–12 and in vivo (Y.Q.-W., R.W., D.P., J. Johnson and L. Van Eldik, unpublished data and refs 7, 13, 14) by treatment with central nervous system extracts (brain or spinal cord) and purified central nervous system and glia-derived proteins. Here we report that in vivo treatment of chick embryos with brain-derived neurotrophic factor rescues motoneurons from naturally occurring cell death. Furthermore, in vivo treatment with brain-derived neurotrophic factor (and nerve growth factor) also prevents the induced death of motoneurons that occurs following the removal of descending afferent input (deafferentation)5. These data indicate that members of the neurotrophin family can promote the survival of developing avian motoneurons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hamburger, V. J. comp. Neurol. 160, 535–546 (1975).

    Article  CAS  Google Scholar 

  2. Oppenheim, R. W. A. Rev. Neurosci. 14, 453–501 (1991).

    Article  CAS  Google Scholar 

  3. Hamburger, V. Amer, J. Anat. 102, 465–410 (1958).

    Article  Google Scholar 

  4. Oppenheim, R. W., Chu-Wang, I. W. & Maderdrut, J. L. J. comp. Neurol. 177, 87–112 (1978).

    Article  CAS  Google Scholar 

  5. Okado, N. & Oppenheim, R. W. J. Neurosci. 4, 1639–1652 (1984).

    Article  CAS  Google Scholar 

  6. Oppenheim, R. W., Haverkamp, L. Prevette, D., McManaman, J. & Appel, S. Science 240, 919–922 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Oppenheim, R. W., Prevette, D., Qin-Wei, Y., Collins, F. & MacDonald, J. Science 251, 1616–1618 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Sendtner, M., Kreutzberg, H. & Thoenen, H. Nature 345, 440–441 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Dohrmann, U., Edgar, D., Sendtner, M. & Thoenen, H. Devl Biol. 188, 20–221 (ok?) (1986).

    Google Scholar 

  10. Dohrmann, U., Edgar, D. & Thoenen, H. Devl Biol. 124, 145–152 (1987).

    Article  CAS  Google Scholar 

  11. Arakawa, Y., Sendtner, M. & Thoenen, H. J. Neurosci. 10, 3507–3515 (1990).

    Article  CAS  Google Scholar 

  12. Block-Gallego, E. et al. Development 111, 221–232 (1991).

    Google Scholar 

  13. Bhattacharyya, A. et al. J. Neurobiol. (in the press).

  14. Oppenheim, R. W., Prevette, D. & Fuller, F. J. Neurosci. (in the press).

  15. Hofer, M. M. & Barde, Y.-A. Nature 331, 361–363 (1988).

    Article  Google Scholar 

  16. Oppenheim, R. W., Maderdrut, J. & Wells, D. J. comp. Neurol. 210, 174–189 (1982).

    Article  CAS  Google Scholar 

  17. Yan, Q., Snider, W. D., Pinzone, J. J. & Johnson, E. M. Neuron 1, 335–343 (1988).

    Article  CAS  Google Scholar 

  18. Wayne, D. B. & Heaton, M. B. Devl Biol. 127, 220–223 (1988).

    Article  CAS  Google Scholar 

  19. DiStefano, P. S. et al. Neuron 8, 983–993 (1992).

    Article  CAS  Google Scholar 

  20. Marchetti, D., Haverkamp, L., Clark, R. C. & McManaman, J. Devl Biol. 148, 306–313 (1991).

    Article  CAS  Google Scholar 

  21. Wayne, D. B. & Heaton, M. B. Devl Biol. 138, 473–483 (1990).

    Article  CAS  Google Scholar 

  22. Ernfors, P. & Persson, H. Eur. J. Neurosci. 3, 953–961 (1991).

    Article  Google Scholar 

  23. Maisonpierre, P. C. et al. Neuron 5, 501–509 (1990).

    Article  CAS  Google Scholar 

  24. Hulst, J. R. & Bennett, M. Devl Brain Res. 25, 153–156 (1986).

    Article  CAS  Google Scholar 

  25. Sendtner, M., Holtman, B., Kolbeck, R., Theonen, H. & Barde, Y.-A. Nature 360, 757–759 (1992).

    Article  ADS  CAS  Google Scholar 

  26. Yan, Q., Elliott, J. & Snider, W. D. Nature 360, 753–755 (1992).

    Article  ADS  CAS  Google Scholar 

  27. Sendtner, M. et al. Nature 358, 502–504 (1992).

    Article  ADS  CAS  Google Scholar 

  28. Oppenheim, R. W., Prevette, D. & Cole, T. Devl Biol. 133, 468–474 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oppenheim, R., Qin-Wei, Y., Prevette, D. et al. Brain-derived neurotrophic factor rescues developing avian motoneurons from cell death. Nature 360, 755–757 (1992). https://doi.org/10.1038/360755a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/360755a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing