Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Function of a truncated dihydropyridine receptor as both voltage sensor and calcium channel

Abstract

THE skeletal muscle dihydropyridine (DHP) receptor serves dual functions, as a voltage sensor for excitation–contraction coupling and as an L-type calcium channel1–3. Biochemical analysis indicates the presence of two forms of the DHP receptor polypeptide in skeletal muscle, a full-length translation product present as a minor species and a much more abundant form that has a truncated carboxy-terminus4–6. On the basis of these and other observations7, it has been proposed8 that, in skeletal muscle, only the full-length DHP receptor can function as a calcium channel and that the truncated form can only function as a voltage sensor for excitation–contraction coupling. To resolve this issue, we have now constructed a complementary DNA (pC6Δl) encoding a protein corresponding to the truncated DHP receptor in skeletal muscle. Expression of pC6Δl in dysgenic myotubes fully restores both excitation–contraction coupling and calcium current, consistent with the idea that a single class of DHP receptors performs both functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rios, E. & Brum, G. Nature 325, 717–720 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Tanabe, T. et al. Nature 328, 313–318 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Tanabe, T., Beam, K. G., Powell, J. A. & Numa, S. Nature 336, 134–139 (1988).

    Article  ADS  CAS  Google Scholar 

  4. De Jongh, K. S., Merrick, D. K. & Catterall, W. A. Proc. natn. Acad. Sci. U.S.A. 86, 8585–8589 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Lai, Y., Seagar, M. J., Takahashi, M. & Catterall, W. A. J. biol. Chem. 265, 20839–20848 (1990).

    CAS  PubMed  Google Scholar 

  6. De Jongh, K. S., Warner, C., Colvin, A. A. & Catterall, W. A. Proc. natn. Acad. Sci. U.S.A. 88, 10778–10782 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Schwartz, L. M., McCleskey, E. W. & Almers, W. Nature 314, 747–751 (1985).

    Article  ADS  CAS  Google Scholar 

  8. Catterall, W. A. Cell 64, 871–874 (1991).

    Article  CAS  Google Scholar 

  9. Tanabe, T., Mikami, A., Numa, S. & Beam, K. G. Nature 344, 451–453 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Armstrong, C. M., Bezanilla, F. M. & Horowicz, P. Biochim. biophys. Acta 267, 605–608 (1972).

    Article  CAS  Google Scholar 

  11. Schneider, M. F. & Chandler, W. K. Nature 242, 244–246 (1973).

    Article  ADS  CAS  Google Scholar 

  12. Adams, B. A., Tanabe, T., Mikami, A., Numa, S. & Beam, K. G. Nature 346, 569–572 (1990).

    Article  ADS  CAS  Google Scholar 

  13. Lamb, G. D. & Walsh, T. J. Physiol., Lond. 393, 595–617 (1987).

    Article  CAS  Google Scholar 

  14. Tanabe, T., Adams, B. A., Numa, S. & Beam, K. G. Nature 352, 800–803 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Taylor, J. W., Otto, J. & Eckstein, F. Nucleic Acids Res. 13, 8764–8785 (1985).

    Google Scholar 

  16. Mishina, M. et al. Nature 307, 604–608 (1984).

    Article  ADS  CAS  Google Scholar 

  17. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pflügers Arch. ges. Physiol. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  18. Nowycky, M. C., Fox, A. P. & Tsien, R. W. Nature 316, 440–443 (1985).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beam, K., Adams, B., Niidome, T. et al. Function of a truncated dihydropyridine receptor as both voltage sensor and calcium channel. Nature 360, 169–171 (1992). https://doi.org/10.1038/360169a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/360169a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing