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NEWS AND VIEWS 

The model for almost all seasons? 
The solution by Onsager, almost exactly half a century ago, of a simple-minded two-dimensional model of a 
ferromagnet has been a powerful stimulus in theoretical physics. 

A MODEL is an approximate description of 
reality, right? And a good model is a model 
which, on the one hand, is comprehensible in 
the sense of providing an image for the mind 
and which, at the same time, is calculable. 
Everybody agrees. 

The most familiar example is the model 
of the perfect gas as an assemblage of rigid 
elastic spheres, billiard balls in textbook 
language. Once Maxwell had shown that a 
collection of such spheres would indeed 
obey the rules required of a perfect gas, the 
rigid-sphere model of kinetic theory was 
destined for a virtually infinite life. Much of 
what has since been called physical chemis
try consists of the definition of the ways in 
which atoms and molecules cannot be accu
rately represented by rigid elastic spheres, 
and of the offering of explanations. 

In retrospect, it would have been good if 
Maxwell and his contemporaries had been a 
little more adventurous. The best part of half 
a century went by before people started 
looking seriously at the properties of the 
rigid-sphere liquid, for example. But for the 
purposes of the kinetic theory, and once the 
supposition that atoms are rigid elastic 
spheres has been shown to be a good first 
approximation, why not have gone a step or 
so further, and have tested the model to 
destruction? 

Over the years, that has inevitably been 
done. Relaxing the condition that the colli
sion between atoms should be elastic, or that 
momentum should be conserved, leads 
straightforwardly to predictions of the de
parture of real billiard-ball gases from the 
laws of the perfect gas and to the calculation 
of the virial coefficients in terms of the 
parameters of inelasticity, whatever they may 
have meant physically. Similarly, it would 
have been good to know what the late nine
teenth century made of the non-spherical, 
perhaps ellipsoid, model of the atom. There 
may still be essays in this direction by disap
pointed authors still to be rescued from late
Victorian attic rooms. 

It is difficult to think of a more robust (in 
the sense of a more generally applicable) 
model of the real world unless it is the 
tautologous continuum model of three-di
mensional reality. Formally at least, you can 
calculate almost anything that way. The 
deformation of a solid object under the 
influence of an external field of force? No 
problem. 

Simply imagine that the body is made up 
of a collection of parallelipipeds cemented 
together by internal forces, calculate the 
deformation of each of them in terms of the 
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coefficients ofthe supposed elasticity tensor, 
put all of them together and require that the 
forces across each face cancel out. The out
come is a differential equation of some equiva
lent thereof. But a little reflection will show 
that these elegant ways of talking, which 
brought great fame to late-Victorian Cam
bridge, are not much more than ways of doing 
calculus in three dimensions (whence the term 
"tautologous"). They have little to say about 
physics. 

If the three-dimensional continuum is an 
arid venue to explore, there is luckily a class 
of models that compare well, in utility and 
versatility, with the simple hard elastic sphere 
as a model of an atom in a perfect gas: the 
Ising model, as this potential paragon among 
physical models is known. Ising, for what it 
is worth, was an Austrian who, in the early 
1920s, believed it would serve the public 
interest if there were a simple and stylized 
model of a ferromagnet that would be math
ematically tractable. 

So why not take, to begin with at least, the 
simplest possible case, that of a three dimen
sional cubic lattice, and site a little magnet at 
each vertex? Further simplifications imme
diately suggest themselves. If the little mag
nets represent real dipole magnets, with fields 
of force declining as the third power of the 
distance, surely it will suffice to count only 
nearest neighbour interactions. And then, 
with the arrival of quantum mechanics and 
the doctrine of electron spin, surely it will 
make sense to suppose that the little magnets 
can point in only one direction (that of the 
external field) or the opposite? 

So there emerges the Ising model of a 
quantised ferromagnet: little dipole magnets 
at the vertices of a regular lattice, and able to 
point in one direction or the other. There 
need not be an external magnetic field, but, 
on the other hand, there may be. The prob
lem is to calculate the degree of magnetic 
ordering within the three-dimensional array. 
It sounds simple. As it happens, the problem 
is insoluble. For the best part of half a 
century, people have broken their heads on 
it, but have failed to solve it. Worse, there 
seems to be no proof that the conundrum 
cannot be solved analytically, which means 
that people keep on breaking their heads. 

So how can such a model serve any useful 
purpose? The simple answer is that the model 
is at least an easy means of defining prob
lems and of representing them mathemati
cally. You might say, for example, that the 
energy of interaction between two neigh
bouring sites in the lattice is either some 
quantity J or - J, depending on whether the 

little magnets are pointing in opposite or the 
same directions. To make the ferromagnetic 
model into that for an anti-ferromagnetic, 
simply make J negative. And so on. So what 
a pity that the model is incalculable. 

That is how it appeared to have remained 
until the early 1940s. By then, it had been 
recognised that the Ising model would also 
be a splendid model of binary alloys such as 
13-brass, whose practical value rests on a 
marked transition from an ordered (and tough) 
state to one in which the lattice atoms are 
randomly arranged, and which is a malleable 
metal by comparison. And if only the model 
could be solved, would it not be possible to 
make a model of a liquid in equilibrium with 
its vapour by letting occupied lattice sites 
represent real atoms, interacting with their 
neighbouring sites if they are also occupied, 
but supposing that empty sites represent 
mere vacuum? 

Only in the early 1940s did the late Lars 
Onsager provide a half solution, a way of 
calculating the properties of a two-dimen
sional lattice. Although this calculation was 
exact, on the face of things it had little to do 
with real ferro-magnetism; most conspicu
ously, it did not uncover the finite change of 
entropy (signalled by the emission of finite 
amounts of heat on cooling) of real 
ferromagnets as they are cooled through 
their transition or Curie temperatures, but 
only an abrupt change of the specific heat. 
But that, of course, is how two-dimensional 
ferromagnets probably behave. 

It is quite remarkable what Onsager's 
demonstration has since accomplished. Al
most trivially, given that the energy of a 
particular configuration of spins on a two
dimensional lattice is a measure of the number 
of nearest-neighbour sites which are occu
pied, the technique becomes a way of deal
ing with random lattice walks. By supposing 
that interconnections consist of chemical 
bonds, it is a way of calculating the configu
rations of polymer molecules. 

Ambitions to generalise from two to 
several possible spin-configurations at every 
lattice point have been successfully accom
modated, while the arrival of high-speed 
computers has made possible numerical 
approximations to the solution of the three
dimensional problem. Add in the remark
able way in which similar calculations are 
now routinely applied to the solution of 
problems in Quantum Chromodynamics, and 
you have the basis for a claim that the simple
minded Ising lattice is the most versatile 
model of them all. 

John Maddox 
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