Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Alterations in a yeast protein resembling HIV Tat-binding protein relieve requirement for an acidic activation domain in GAL4

An Erratum to this article was published on 31 December 1992

Abstract

THE acidic transcriptional activation motif functions in all eukary-otes1–4, which suggests that it makes contact with some universal component of the transcriptional apparatus. Transcriptional activation by the yeast regulatory protein GAL4 requires an acidic region at its carboxyl terminus. Here we implement a selection scheme to determine whether GAL4 can still function when this C-terminal domain has been deleted. It can, when accompanied by a mutation in the SUG1gene which is an essential gene in yeast. Analysis of mutant SUG1in combination with various alleles of GAL4 indicates that SUG1 acts through a transcriptional pathway that depends on GAL4, but requires a region of GAL4 other than the C-terminal acidic activation domain. The predicted amino-acid sequence of SUG1 closely resembles that of two human proteins, TBP1 and MSS1, which modulate expression mediated by the human immunodeficiency virus tatgene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fischer, J. A., Giniger, E., Maniatis, T. & Ptashne, M. Nature 332, 853–856 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Ma, J., Przbilla, E., Hu, J., Bogorad, L. & Ptashne, M. Nature 334, 631–633 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Kakidani, H. & Ptashne, M. Cell 52, 161–167 (1988).

    Article  CAS  Google Scholar 

  4. Webster, N., Jin, J. R., Green, S., Hollis, M. & Chambon, p. Cell 52, 169–178 (1988).

    Article  CAS  Google Scholar 

  5. Matsumoto, K., Adachi, Y., Toh-E, A. & Oshima, Y. J. Bact. 141, 508–527 (1980).

    CAS  PubMed  Google Scholar 

  6. Himmelfarb, H. J., Pearberg, J., Last, D. H. & Ptashne, M. Cell 63, 1299–1309 (1990).

    Article  CAS  Google Scholar 

  7. Suzuki, Y., Nogi, Y., Abe, A. & Fukasawa, T. Molec. cell. Biol. 8, 4991–4999 (1988).

    Article  CAS  Google Scholar 

  8. Nishizawa, M., Suzuki, Y., Nogi, Y., Matsumoto, K. & Fukasawa, T. Proc. natn. Acad. Sci. U.S.A. 87, 5373–5377 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Johnston, M. & Dover, J. Genetics 120, 63–74 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Gill, G. & Ptashne, M. Cell 51, 121–126 (1987).

    Article  CAS  Google Scholar 

  11. Salmeron, J. M. & Johnston, S. A. Nucleic Acid Res. 14, 7767–7781 (1986).

    Article  CAS  Google Scholar 

  12. Mylin, L. M., Johnston, M. & Hopper, J. E. Molec. cell. Biol. 10, 4623–4629 (1990).

    Article  CAS  Google Scholar 

  13. Erdmann, R. et al. Cell 64, 499–510 (1991).

    Article  CAS  Google Scholar 

  14. Nelbock, P., Dillon, P. J., Perkins, A. & Rosen, C. Science 248, 1650–1653 (1990).

    Article  ADS  CAS  Google Scholar 

  15. Eakle, K. A., Bernstein, M. & Emr, S. D. Molec. cell. Biol. 8, 4098–4109 (1988).

    Article  CAS  Google Scholar 

  16. Block, M. R., Glick, B. S., Wilcox, D. E., Wieland, F. T. & Rothman, J. E. Proc. natn. Acad. Sci. U.S.A. 86, 7582–7586 (1988).

    Google Scholar 

  17. Fröhlich, K.-U. et al. J. Cell Biol. 114, 443–453 (1991).

    Article  Google Scholar 

  18. Koller, K. J. & Brownstein, M. J. Nature 325, 542–545 (1987).

    Article  ADS  CAS  Google Scholar 

  19. Peters, J.-M., Walsh, M. J. & Franke, W. W. EMBO J. 9, 1757–1767 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swaffield, J., Bromberg, J. & Johnston, S. Alterations in a yeast protein resembling HIV Tat-binding protein relieve requirement for an acidic activation domain in GAL4. Nature 357, 698–700 (1992). https://doi.org/10.1038/357698a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/357698a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing