Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

14C activity of dissolved organic carbon fractions in the north-central Pacific and Sargasso Sea

Abstract

RADIOCARBON measurements of dissolved organic carbon (DOC) oxidizable by ultraviolet irradiation (DOCuv) yielded apparent ages of 6,000 yr in the deep waters of the oligotrophic north-central Pacific gyre1. Recent reports of a potentially larger pool of DOC as measured by high-temperature catalytic combustion (DOChtc) using discrete injections of sea water2,3 have led to speculation that 'younger', more recently produced DOC could contribute significantly to overall oceanic organic carbon fluxes, owing to its suspected greater biological lability4–6. Here we present a comparison ofΔ14C (the deviation in parts per thousand from the 14C activity of nineteenth-century wood)7 of the DOChtc, DOCuv and humic substances in profiles from the oligotrophic north-central Pacific and Sargasso Sea. For each ocean, the Δ14C values of all three fractions are remarkably similar, yielding no evidence for a component of DOC that is cycled through the system on timescales shorter than several thousands of years. We observe an age difference between the two oceans of 2,000 yr for the deepest DOC, which can largely be accounted for by differences in the Δ14C of the DOC sources to the deep basins, and by the different deep-water circulation patterns and transit times in the two oceans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Williams, P. & Druffel, E. Nature 330, 246–248 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Sugimura, Y. & Suzuki, Y. Mar. Chem. 24, 105–131 (1988).

    Article  CAS  Google Scholar 

  3. Martin, J. & Fitzwater, S. Nature 356, 699–700 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Toggweiler, J. in Productivity of the Ocean: Past and Present (eds Berger, W., Smetacek, V. & Wefer, G.) 65–83 (Wiley, New York, 1989).

    Google Scholar 

  5. Williams, P. & Bruffel, E. Oceanogr Mag. 1, 14–17 (1988).

    Article  Google Scholar 

  6. Kirchman, D., Suzuki, Y., Garside, C. & Ducklow, H. Nature 352, 612–614 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Stuiver, M. & Polach, H. Radiocarbon 19, 355–363 (1977).

    Article  Google Scholar 

  8. Bauer, J., Occelli, M., Williams, P. & McCaslin, P. Mar. Chem. (in the press).

  9. Thurman, E. & R. Malcolm, Envir. Sci. Technol. 15, 463–466 (1981).

    Article  ADS  CAS  Google Scholar 

  10. Aiken, G. in Humic Substances in Soil, Sediment and Water (eds Aiken, G., McKnight, D., Wershaw, R. & MacCarthy, P.) 363–386 (Wiley, New York, 1985).

    Google Scholar 

  11. Sofer, Z. Analyt. Chem. 52, 1389–1391 (1980).

    Article  CAS  Google Scholar 

  12. Druffel, E., Williams, P. & Suzuki, Y. Geophys. Res. Lett. 16, 991–994 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Druffel, E. et al. Radiocarbon 31, 523–532 (1989).

    Article  Google Scholar 

  14. Mantoura, R. & Woodward, E. Geochim. cosmochim. Acta 47, 1293–1309 (1983).

    Article  ADS  CAS  Google Scholar 

  15. Keys, A., Christensen, E. & Krogh, A. J. mar. Biol. Ass. UK 29, 181–196 (1935).

    Article  Google Scholar 

  16. Rakestraw, N. J. mar. Res. 3, 259–263 (1947).

    Google Scholar 

  17. Barber, R. Nature 220, 274–275 (1968).

    Article  ADS  CAS  Google Scholar 

  18. Broecker, W. Chemical Oceanography (Harcourt Brace, Jovanovich, New York. 1974).

    Google Scholar 

  19. Stuiver, M., Quay, P. & Ostlund, H. Science 219, 849–854 (1983).

    Article  ADS  CAS  Google Scholar 

  20. Emerson, S. & Hedges, J. Paleoceanography 3, 621–634 (1988).

    Article  ADS  Google Scholar 

  21. Hedges, J. Mar. Chem. (in the press).

  22. Smith, S. & Mackenzie, F. Global biogeochem. Cycles 1, 187–198 (1987).

    Article  ADS  CAS  Google Scholar 

  23. Bauer, J., Williams, P., Druffel, E., & Suzuki, Y. Eos 71, 154 (1990).

    Google Scholar 

  24. Druffel, E. & Williams, P. Nature 347, 172–174 (1990).

    Article  ADS  CAS  Google Scholar 

  25. Bauer, J., Williams, P. & Druffel, E. Analyt. Chem. 64, 824 (1992).

    Article  CAS  Google Scholar 

  26. Vogel, J., Nelson, D. & Southon, J. Radiocarbon 29, 323–333 (1987).

    Article  CAS  Google Scholar 

  27. Jull, A., Donohue, D., Hathaway, A., Linick, T. & Toolin, L. Radiocarbon 28, 191–196 (1986).

    Article  CAS  Google Scholar 

  28. Williams, P. M. US JGOFS News 3, 1 (1991).

    Google Scholar 

  29. Druffel, E., Williams, P., Bauer, J. & Ertel, J. J. geophys. Res. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, J., Williams, P. & Druffel, E. 14C activity of dissolved organic carbon fractions in the north-central Pacific and Sargasso Sea. Nature 357, 667–670 (1992). https://doi.org/10.1038/357667a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/357667a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing