Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Location of enhancers is essential for the imprinting of H19 and Igf2 genes

Abstract

Genomic imprinting is the process in mammals by which gamete-specific epigenetic modifications establish the differential expression of the two alleles of a gene. The tightly linked H19 and Igf2 genes are expressed in tissues of endodermal and mesodermal origin, with H19 expressed from the maternal chromosome and Igf2 expressed from the paternal chromosome. A model has been proposed to explain the reciprocal imprinting of these genes1; in this model, expression of the genes is governed by competition between their promoters for a common set of enhancers. An extra set of enhancers might be predicted to relieve the competition, thereby eliminating imprinting. Here we tested this prediction by generating mice with a duplication of the endoderm-specific enhancers. The normally silent Igf2 gene on the maternal chromosome was expressed in liver, consistent with relief from competition. We then generated a maternal chromosome containing a single set of enhancers located equidistant from Igf2 and H19; the direction of the imprint was reversed. Thus, the location of the enhancers determines the outcome of competition in liver, and the strength of the H19 promoter is not sufficient to silence Igf2.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Insertion of the H19 endoderm-specific enhancers between Igf2 and H19.
Figure 2: Expression of Igf2 and H19 in ENHdup mice.
Figure 3: Expression of Igf2 and H19 in ENHmov mice.
Figure 4: Methylation of H19 and Igf2.

Similar content being viewed by others

References

  1. Bartolomei, M. S. & Tilghman, S. M. Parental imprinting of mouse chromosome 7. Semin. Dev. Biol. 3, 107–117 (1992).

    Google Scholar 

  2. Yoo-Warren, H., Pachnis, V., Ingram, R. S. & Tilghman, S. M. Two regulatory domains flank the mouse H19 gene. Mol. Cell. Biol. 8, 4707–4715 (1988).

    Article  CAS  Google Scholar 

  3. Leighton, P. A., Saam, J. R., Ingram, R. S., Stewart, C. L. & Tilghman, S. M. An enhancer deletion affects both H19 and Igf2 expression. Genes Dev. 9, 2079–2089 (1995).

    Article  CAS  Google Scholar 

  4. Bartolomei, M. S., Webber, A. L., Brunkow, M. E. & Tilghman, S. M. Epigenetic mechanisms underlying the imprinting of the mouse H19 gene. Genes Dev. 7, 1663–1673 (1993).

    Article  CAS  Google Scholar 

  5. Ferguson-Smith, A. C., Sasaki, H., Cattanach, B. M. & Surani, M. A. Parental-origin-specific epigenetic modifications of the mouse H19 gene. Nature 362, 751–755 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Li, E., Beard, C. & Jaenisch, R. The role of DNA methylation in genomic imprinting. Nature 366, 362–365 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Choi, O.-R. B. & Engel, J. D. Developmental regulation of β-globin switching. Cell 55, 17–26 (1988).

    Article  CAS  Google Scholar 

  8. Nickol, J. M. & Felsenfeld, G. Bidirectional control of the chicken β- and ε-globin genes by a shared enhancer. Proc. Natl Acad. Sci. USA 85, 2548–2552 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Gu, H., Zou, Y.-R. & Rajewsky, K. Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting. Cell 73, 1155–1164 (1993).

    Article  CAS  Google Scholar 

  10. Leighton, P. A., Ingram, R. S., Eggenschwiler, J., Efstratiadis, A. & Tilghman, S. M. Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature 375, 34–39 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Brunkow, M. E. & Tilghman, S. M. Ectopic expression of the H19 gene in mice causes prenatal lethality. Genes Dev. 5, 1092–1101 (1991).

    Article  CAS  Google Scholar 

  12. Sasaki, H. et al. Parental imprinting: potentially active chromatin of the repressed maternal allele of the mouse insulin-like growth factor (Igf2) gene. Genes Dev. 6, 1843–1856 (1992).

    Article  CAS  Google Scholar 

  13. Feil, R., Walter, J., Allen, N. D. & Reik, W. Developmental control of allelic methylation in the imprinted mouse Igf2 and H19 genes. Development 120, 2933–2943 (1994).

    CAS  PubMed  Google Scholar 

  14. Brandeis, M. et al. The ontogeny of allele-specific methylation associated with imprinted genes in the mouse. EMBO J. 12, 3669–3677 (1993).

    Article  CAS  Google Scholar 

  15. Walter, J. et al. in Epigenetic Mechanisms of Gene Regulation(eds Russo, V. E. A., Martienssen, R. A. & Riggs, A. D.) 195–213 (Cold Spring Harbor Laboratory Press, (1996)).

    Google Scholar 

  16. Kellum, R. & Schedl, P. Aposition-effect assay for boundaries of higher order chromosomal domains. Cell 64, 941–950 (1991).

    Article  CAS  Google Scholar 

  17. Kellum, R. & Schedl, P. Agroup of scs elements function as domain boundaries in an enhancer-blocking assay. Mol. Cell Biol. 12, 2424–2431 (1992).

    Article  CAS  Google Scholar 

  18. Ripoche, M.-A., Kress, C., Poirier, F. & Dandolo, L. Deletion of the H19 transcription unit reveals the existence of a putative imprinting control element. Genes Dev. 11, 1596–1604 (1997).

    Article  CAS  Google Scholar 

  19. Lyko, F., Brenton, J. D., Surani, M. A. & Paro, R. An imprinting element from the mouse H19 locus functions as a silencer in Drosophila. Nature Genet. 16, 171–173 (1997).

    Article  CAS  Google Scholar 

  20. McCarrick, J. W. II, Parnes, J. R., Seong, R. H., Solter, D. & Knowles, B. B. Positive-negative selection gene targeting with the diphtheria toxin A-chain gene in mouse embryonic stem cells. Transgen. Res. 2, 183–190 (1993).

    Article  CAS  Google Scholar 

  21. Johnson, K. A. et al. Transgenic mice for the preparation of hygromycin-resistant primary embryonic fibroblast feeder layers for embryonic stem cell selections. Nucleic Acids Res. 23, 1273–1275 (1995).

    Article  CAS  Google Scholar 

  22. Ramirez-Solis, R. et al. Genomic DNA microextraction: a method to screen numerous samples. Anal. Biochem. 201, 331–335 (1992).

    Article  CAS  Google Scholar 

  23. Feinberg, A. P. & Vogelstein, B. Atechnique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 137, 266–267 (1984).

    Article  CAS  Google Scholar 

  24. Chu, G., Vollrath, D. & Davis, R. W. Separation of large DNA molecules by contour-clamped homogenous electric fields. Science 234, 1582–1585 (1986).

    Article  ADS  CAS  Google Scholar 

  25. Sauer, B. & Henderson, N. Targeted insertion of exogenous DNA into the eukaryotic genome by the re recombinase. New Biol. 2, 441–449 (1990).

    CAS  PubMed  Google Scholar 

  26. Auffray, C. & Rougeon, F. Purification of mouse immunoglobulin heavy-chain messenger RNAs from total myeloma tumor RNA. Eur. J. Biochem. 107, 303–314 (1980).

    Article  CAS  Google Scholar 

  27. Bartolomei, M. S., Zemel, S. & Tilghman, S. M. Parental imprinting of the mouse H19 gene. Nature 351, 153–155 (1991).

    Article  ADS  CAS  Google Scholar 

  28. Dudov, K. P. & Perry, R. P. The gene encoding the mouse ribosomal protein L32 contains a uniquely expressed intron containing gene and an unmutated processed gene. Cell 37, 457–468 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Watanabe and S. Wang for help in generating chimaeras and the members of our laboratory for discussions. This work was supported by a grant from the National Institute of General Medical Science. S.M.T. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Webber, A., Ingram, R., Levorse, J. et al. Location of enhancers is essential for the imprinting of H19 and Igf2 genes. Nature 391, 711–715 (1998). https://doi.org/10.1038/35655

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35655

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing