Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Solution structure of the DNA-binding domain of Cd2-GAL4 from S. cerevisiae

Abstract

THE GAL4 protein activates transcription of the genes required for galactose utilization in Saccharomyces cerevisiae1. The protein, consisting of 881 amino acids, is dimeric when bound to one of the approximately twofold symmetrical DNA sites present in the galactose upstream activating sequence (UASG)2–5. Here we use two-dimensional NMR spectroscopy to determine the structure of an amino-terminal fragment of GAL4 (residues 1-65). This fragment, a monomer in solution, binds as a dimer specifically to UASG-containing DNA. Residues 9-40 form a well defined, compact globular cluster, whereas residues 1-8 and 41-66 show considerable conformational mobility in the absence of DNA. The compact domain contains a motif in which six cysteines, located on two symmetrically related helix/extended strand units connected by a long loop, coordinate two central zinc ions, forming a bimetal-thiolate cluster6–11. The zincs were replaced by NMR-active113Cd in most of our work and structural parameters are therefore derived from the Cd2-protein. The structure obtained for the GAL4 DNA-binding domain represents a novel DNA-binding motif. Essentially the same conformation is observed for the compact domain in solution using NMR techniques as was seen for the central core of the N-terminal fragment bound to DNA using crystallographic techniques12. Thus, the core of the DNA-binding domain changes little upon binding DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Johnstone, M. Microbiol. Rev. 51, 458–476 (1987).

    Google Scholar 

  2. Giniger, E., Varnum, S. M. & Ptashne, M. Cell 40, 767–774 (1985).

    Article  CAS  Google Scholar 

  3. Bram, R. & Kornberg, R. Proc. natn. Acad. Sci. U.S.A. 82, 43–47 (1985).

    Article  ADS  CAS  Google Scholar 

  4. Carey, M., Kakidani, H., Leatherwood, J., Mostashari, F. & Ptashne, M. J. molec. Biol 209, 423–432 (1989).

    Article  CAS  Google Scholar 

  5. Chasman, D. I. & Kornberg, R. D. Molec. cell Biol. 10, 2916–2923 (1990).

    Article  CAS  Google Scholar 

  6. Johnston, S. A., Zavortink, M. J., Debouck, C. & Hopper, J. E. Proc. natn. Acad. Sci. U.S.A. 83, 6553–6557 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Gadhavi, P. L., Davis, A. L., Povey, J. F., Keeler, J. & Laue, E. D. FEBS Lett. 281, 223–226 (1991).

    Article  CAS  Google Scholar 

  8. Povey, J. F. Diakun, G. P., Garner, C. D., Wilson, S. P. & Laue, E. D. FEBS Lett. 266, 142–146 (1990).

    Article  CAS  Google Scholar 

  9. Pan, T. & Coleman, J. E. Biochemistry 29, 3023–3029 (1990).

    Article  CAS  Google Scholar 

  10. Gardner, K. H., Pan, T., Narula, S., Rivera, E. & Coleman, J. E. Biochemistry 30, 11292–11302 (1991).

    Article  CAS  Google Scholar 

  11. Serikawa, Y., Shirakawa, M., Matsuo, H. & Kyogoku, Y. Protein Engng 3, 267–272 (1990).

    Article  CAS  Google Scholar 

  12. Marmorstein, R., Carey, M., Ptashne, M., & Harrison, S. C., Nature (in the press).

  13. Wüthrich, K. NMR of Proteins and Nucleic Acids (Wiley, New York, 1986).

    Book  Google Scholar 

  14. Englander, S. W. & Kallenbach, N. R. Q. Rev. Biophys. 16, 521–655 (1984).

    Article  Google Scholar 

  15. Gadhavi, P. L., Raine, A. R. C., Alefounder, P. R. & Laue, E. D. FEBS Lett. 276, 49–53 (1990).

    Article  CAS  Google Scholar 

  16. Pan, T. & Coleman, J. E. Biochemistry 30, 4212–4222 (1991).

    Article  CAS  Google Scholar 

  17. Havel, T. F. Prog. Biophys. molec. Biol 56, 43–78 (1991).

    Article  CAS  Google Scholar 

  18. Harrison, S. C. Nature 353, 715–719 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Keegan, L., Gill, G. & Ptashne, M. Science 231, 699–704 (1986).

    Article  ADS  CAS  Google Scholar 

  20. VaŠák, M., Wörgötter, E., Wagner, G., Kägi, J. R. H. & Wüthrich, K. J. molec. Biol. 196, 711–719 (1987).

    Article  Google Scholar 

  21. Hyberts, S. G., Goldberg, M. S., Havel, T. F. & Wagner, G. Protein Science (in the press).

  22. Bystrov, V. F. Prog. NMR Spectrosc. 40, 41–81 (1976).

    Article  Google Scholar 

  23. Montelione, G. T., Winkler, M. E., Rauenbuehler, P. & Wagner, G. J. magn. Reson. 82, 198–204 (1989).

    ADS  CAS  Google Scholar 

  24. Eccles, C., Güntert, P., Billeter, M. & Wüthrich, K. J. Biomol. NMR 1, 111–130 (1991).

    Article  CAS  Google Scholar 

  25. Detlefsen, D. J., Thanabal, V., Pecoraro, V. L. & Wagner, G. Biochemistry 30, 9040–9046 (1991).

    Article  CAS  Google Scholar 

  26. Arseniev, A. et al. J. molec. Biol. 201, 637–657 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baleja, J., Marmorstein, R., Harrison, S. et al. Solution structure of the DNA-binding domain of Cd2-GAL4 from S. cerevisiae. Nature 356, 450–453 (1992). https://doi.org/10.1038/356450a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/356450a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing