Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Thermal disequilibrium at the top of volcanic clouds and its effect on estimates of the column height

Abstract

SATELLITE images of large volcanic explosions reveal that the tops of volcanic eruption columns are much colder than the surrounding atmosphere1. We propose that this effect occurs whenever a mixture of hot volcanic ash and entrained air ascends sufficiently high into a stably stratified atmosphere. Although the mixture is initially very hot, it expands and cools as the ambient pressure decreases. We show that cloud-top undercoolings in excess of 20°C may develop in clouds that penetrate the stratosphere; this is consistent with observations of the 4 April 1982 eruption of El Chichón1 and the 18 May 1980 eruption of Mount St Helens2. Furthermore, from our model results, we predict that for a given cloud-top temperature, variations in the initial temperature of 100–200°C may correspond to variations in the column height of 5–10 km. We deduce that the present practice of converting satellite-based measurements of the temperature at the top of volcanic eruption columns to estimates of the column height will produce rather inaccurate results and should therefore be discontinued.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Matson, M. J. Volcanol. geotherm. Res. 23, 1–10 (1984).

    Article  ADS  Google Scholar 

  2. Harris, D. M., Rose, W. I., Roe, R. & Thompson, M. R. US Geol. Surv. Pap. 1250, 323–333 (1981).

    Google Scholar 

  3. Armienti, P., Macedonio, G. & Pareschi, M. T. J. geophys. Res. 93, 6463–6476 (1989).

    Article  ADS  Google Scholar 

  4. Bursik, M. I., Sparks, R. S. J., Gilbert, J. & Carey, S. Bull. Volcanol. (in the press).

  5. Carey, S. & Sparks, R. S. J. Bull Volcanol. 48, 109–125 (1986).

    Article  ADS  Google Scholar 

  6. Carey, S. & Sigurdsson, H. Bull. Volcanol. 48, 127–141 (1986).

    Article  ADS  Google Scholar 

  7. Sigurdsson, H. Palaeogeogr. Palaeoclimatol. Palaeoecol. 89, 277–289 (1990).

    Article  Google Scholar 

  8. Kienle, J. & Shaw, G. E. J. Volcanol. geotherm Res. 6, 139–164 (1979).

    Article  ADS  Google Scholar 

  9. Malingreau, J. P. & Kaswanda, J. Volcanol. geotherm. Res. 27, 179–194 (1986).

    Article  ADS  Google Scholar 

  10. Sawada, Y. Tech. Rep. met. Inst. (Japan) 22, 1–335 (1987).

    Google Scholar 

  11. Glaze, L. S., Francis, P. W., Self, S. & Rotherey, D. A. Bull. Volcanol. 51, 149–160 (1989).

    Article  ADS  Google Scholar 

  12. Morton, B., Taylor, G. I. & Turner, J. S. Proc. R. Soc. Lond. A234, 1–23 (1956).

    ADS  Google Scholar 

  13. Sparks, R. S. J. Bull. Volcanol. 48, 1–16 (1986).

    Article  ADS  Google Scholar 

  14. Wilson, L. & Walker, G. P. L. Q. Jl R. astr. Soc. 89, 651–679 (1987).

    ADS  Google Scholar 

  15. Woods, A. W. Bull. Volcanol. 50, 69–91 (1988).

    Article  Google Scholar 

  16. Sparks, R. S. J., Carey, S. N. & Sigurdsson, H. Sedimentology 38, 839–856 (1991).

    Article  ADS  Google Scholar 

  17. Sparks, R. S. J., Moore, J. & Rice, J. J. Volcanol. geotherm. Res. 28, 257–274 (1987).

    Article  ADS  Google Scholar 

  18. Woods, A. W. & Wohletz, K. Nature 350, 225–227 (1991).

    Article  ADS  Google Scholar 

  19. Mouginis-Mark, P. J. et al. Remote Sens. Envir. 36, 1–12 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woods, A., Self, S. Thermal disequilibrium at the top of volcanic clouds and its effect on estimates of the column height. Nature 355, 628–630 (1992). https://doi.org/10.1038/355628a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/355628a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing