Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Will greenhouse warming lead to Northern Hemisphere ice-sheet growth?

Abstract

ALTHOUGH model simulations predict a higher mean global temperature by the middle of the next century in response to increased atmospheric concentrations of greenhouse gases1, the response of the cryosphere to specific changes in latitudinal and seasonal temperature distribution is poorly constrained by modelling2,3 or through instrumental measurements of recent variations in snow cover4and ice thickness5,6. Here we examine the recent geological record (130 kyr to present) to obtain an independent assessment of ice-sheet response to climate change. The age and distribution of glacial sediments, coupled with marine and terrestrial proxy records of climate, support arguments that initial ice-sheet growth at the beginning of the last glacial cycle occurred at high northern latitudes (65–80° N) under climate conditions rather similar to present. In particular, the conditions most favourable for glacier inception are warm high-latitude oceans, low terrestrial summer temperature and elevated winter temperature. We find that the geological data support the idea that greenhouse warming, which is expected to be most pronounced in the Arctic and in the winter months, coupled with decreasing summer insolation7 may lead to more snow deposition than melting at high northern latitudes8 and thus to ice-sheet growth.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schlesinger, M. E. in Climate and Geo-sciences (eds Berger, A., Schneider, S. & Duplessy, J. Cl.) 375–415 (Kluwer, Dordrecht, 1989).

    Book  Google Scholar 

  2. Saltzman, B. J. atmos. Sci. 41, 2263–2266 (1984).

    Article  ADS  Google Scholar 

  3. Rind, D. Ann. Glaciol. 14, 356 (1990).

    Article  Google Scholar 

  4. Barry, R. G. Geol. J. 20, 121–127 (1990).

    Google Scholar 

  5. Zwally, H. J., Brenner, A. C. Major, R. A., Bindshadler, R. A. & Marsh, J. G. Science 246, 1587–1591 (1989); 248, 288–289 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Bentley, C. R. Eos 70, 1002 (1989).

    Google Scholar 

  7. Berger, A. L. Quat Res. 9, 137–167 (1978).

    Article  Google Scholar 

  8. Andrews J. T. in Global Changes of the Past (ed. Bradley, R.) 321–339 (UCAR Office for Interdisciplinary Earth Studies, Boulder, 1991).

    Google Scholar 

  9. Budyko, M. I. Tellus 21, 611–619 (1969).

    Article  ADS  Google Scholar 

  10. Oerlemans, J. & van der Veen, C. J. Ice Sheets and Climate (Reidel, Boston, 1984).

    Book  Google Scholar 

  11. Untersteiner, N. in The Global Climate (ed. Houghton, J. T.) Ch. 8 (Cambridge University Press, 1984).

    Google Scholar 

  12. Douglas, B. C. et al. Science 248, 288 (1990).

    Article  ADS  CAS  Google Scholar 

  13. Shaokleton, N. J. Quat Sci. Rev. 6, 183–190 (1987).

    Article  ADS  Google Scholar 

  14. Ruddiman, W. F. & Mclntyre, A. Science 204, 173–175 (1979); 212, 617–627 (1981).

    Article  ADS  CAS  Google Scholar 

  15. CLIMAP Project members Quat. Res. 21, 123–224 (1984).

  16. Hillaire-Marcel, C. & de Vernal, A. Géogr. phys. Quat 43, 263–290 (1989).

    Google Scholar 

  17. Sparks, B. W. & West, R. G. Phil. Trans. R. Soc. Lond. B258, 1–30 (1970).

    Article  CAS  Google Scholar 

  18. Zagwijn, W. H. Geol. Mijnbouw 62, 437–450 (1983).

    Google Scholar 

  19. Knudsen, K. L. Geol. K. A86, 27–47 (1985).

    Google Scholar 

  20. Mangerud, J., Sønstegaard, E., Sejrup, H. P. & Haldorsen, S. Boreas 10, 137–208 (1981).

    Article  Google Scholar 

  21. Turon, J.-L. Nature 309, 673–676 (1984).

    Article  ADS  CAS  Google Scholar 

  22. Guiot, J. Palaeogeogr. Palaeoclim. Palaeoecol. 80, 49–69 (1990).

    Article  ADS  Google Scholar 

  23. Koerner, R. M. Science 244, 964–968 (1989).

    Article  ADS  CAS  Google Scholar 

  24. Reeh, N. in Quaternary Geology of Canada and Greenland (ed. Fulton, R. J.) Ch. 14 (Geological Survey Canada, Ottawa, 1989).

    Google Scholar 

  25. Miller, G. H., Funder, S., de Vernal, A. & Andrews, J. T. in Inception of the Last Glaciation (eds Clark, P. U. & Lea, P.) (Geological Society of America Special Paper, in the press).

  26. Miller, G. K., Sejrup, H. P., Lehman, S. J. & Forman, S. L. Boreas 18, 273–296 (1989).

    Article  Google Scholar 

  27. Hamilton, T. D. in Glaciation in Alaska: The Geologic Record (eds Hamilton, T. D., Reed, K. M. & Thorson, R. M.) 9–50 (Alaska Geological Survey, Anchorage, 1986).

    Google Scholar 

  28. Ruddiman, W. F. Geol. Soc. Am. Bull. 88, 1813–1827 (1977).

    Article  ADS  Google Scholar 

  29. Koerner, R. M., Bourgeois, J. C. & Fisher, D. A. Ann. Glaciol. 10, 85–91 (1988).

    Article  ADS  Google Scholar 

  30. Andrews, J. T. & Ives J. D. Arct. Alpine Res. 10, 617–633 (1978).

    Article  Google Scholar 

  31. COHMAP members Science 241, 1043–1052 (1988).

  32. Miller, G. H. Geology 4, 502–504 (1976).

    Article  ADS  Google Scholar 

  33. Potapenko, V. Yu., Klementyev, O. L. & Nikolayev, V. I. Int. Symp. Glaciers-Ocean–Atmosphere Interactions (Leningrad, 1990).

    Google Scholar 

  34. Svendsen, J. I. & Mangerud, J. Clirn. Dynam. (in the press).

  35. Bradley, R. S. & Miller, G. H. Nature 237, 385–387 (1972).

    Article  ADS  Google Scholar 

  36. Mayo, I. R. & March, R. S. Ann. Glaciol. 14, 191–194 (1990).

    Article  ADS  Google Scholar 

  37. Martinson, D. G. et al. Quat Res 27, 1–29 (1987).

    Article  CAS  Google Scholar 

  38. Andrews, J. T. Phil. Trans R. Soc. Lond. B318, 645–660 (1988).

    Article  Google Scholar 

  39. NORDQUA 86 Participants Geogr. phys. Quat 43, 1740–1750 (1989).

  40. Loewe, F. Arct Alp. Res. 3, 331–344 (1971).

    Article  Google Scholar 

  41. Ohmura, A. Climate and Energy Balance on Arctic Tundra (Züircher Geographische Schriften, Zurich, 1981).

    Google Scholar 

  42. Mangerud, J. in Abrupt Climate Change (eds Berger, W. H. & Labeyrie, L. D.) 163–171 (Reidel, Boston, 1987).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, G., de Vernal, A. Will greenhouse warming lead to Northern Hemisphere ice-sheet growth?. Nature 355, 244–246 (1992). https://doi.org/10.1038/355244a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/355244a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing