Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Altered chloride ion channel kinetics associated with the ΔF508 cystic fibrosis mutation

Abstract

CYSTIC fibrosis is associated with a defect in epithelial chloride ion transport (reviewed in refs 1, 2) which is caused by mutations in a membrane protein called CFTR (cystic fibrosis transmembrane conductance regulator)3. Heterologous expression of CFTR produces cyclicAMP-sensitive Cl--channel activity4–7.Deletion of phenylalanine at amino-acid position 508 in CFTR (ΔF508 CFTR) is the most common mutation in cystic fibrosis8. It has been proposed that this mutation prevents glycoprotein maturation and its transport to its normal cellular location9. We have expressed both CFTR and ΔF508 CFTR in Vero cells using recombinant vaccinia virus. Although far less ΔF508 CFTR reached the plasma membrane than normal CFTR, sufficient ΔF508 CFTR was expressed at the plasma membrane to permit functional analysis. ΔF508 CFTR expression induced a reduced activity of the cAMP-activated Cl- channel, with conductance, anion selectivity and open-time kinetics similar to those of CFTR, but with much greater closed times, resulting in a large decrease of open probability. The ΔF508 mutation thus seems to have two major consequences, an abnormal translocation of the CFTR protein which limits membrane insertion, and an abnormal function in mediating Cl- transport.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Quinton, P. M. FASEB J. 4, 2709–2717 (1990).

    Article  CAS  Google Scholar 

  2. Welsh, J. M. FASEB J. 4, 2718–2725 (1990).

    Article  CAS  Google Scholar 

  3. Riordan, J. R. et al. Science 245, 1066–1073 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Anderson, M. P., Rich, D. P., Gregory, R. J., Smith, A. E. & Welsh, M. J. Science 251, 679–682 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Rich, D. P. et al. Nature 347, 358–363 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Drumm, M. L. et al. Cell 62, 1227–1233 (1990).

    Article  CAS  Google Scholar 

  7. Kartner, N. et al. Cell 64, 681–691 (1991).

    Article  CAS  Google Scholar 

  8. Kerem, B. S. et al. Science 245, 1073–1080 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Cheng, S. H. et al. Cell 63, 827–834 (1990).

    Article  CAS  Google Scholar 

  10. Moss, B. Science 252, 1662–1667 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Gregory, R. J. et al. Nature 347, 382–386 (1990).

    Article  ADS  CAS  Google Scholar 

  12. Venglarik, C. V., Bridges, R. J. & Frizzell, R. A. Am. J. Physiol. 259, C358–364 (1990).

    Article  CAS  Google Scholar 

  13. Cliff, W. H. & Frizzell, R. A. Proc. natn. Acad. Sci. U.S.A. 87, 4956–4960 (1990).

    Article  ADS  CAS  Google Scholar 

  14. Dreinhöfer, J., Gögelein, H. & Greger, R. Biochim. biophys. Acta 946, 135–142 (1988).

    Article  Google Scholar 

  15. Gray, M. A. et al. Am. J. Physiol. 259, C752–761 (1990).

    Article  CAS  Google Scholar 

  16. Champigny, G., Verrier, B., Gérard, C., Mauchamp, J. & Lazdunski M. FEBS Lett. 259, 263–268 (1990).

    Article  CAS  Google Scholar 

  17. Tabcharani, J. A., Low, W., Elie, D. & Hanrahan, J. W. FEBS Lett. 270, 157–174 (1991).

    Article  Google Scholar 

  18. Lazdunski, M. & Renaud, J.-F. A. Rev. Physiol. 44, 463–473 (1982).

    Article  CAS  Google Scholar 

  19. Triggle, D. J. & Janis, R. A. A. Rev. Pharmac. Tox. 27, 347–369 (1987).

    Article  CAS  Google Scholar 

  20. Edwards, G. & Weston, A. Trends pharmac. Sci. 11, 417–422 (1990).

    Article  CAS  Google Scholar 

  21. Barbry, P. et al. Proc. natn. Acad Sci. U.S.A. 87, 7347–7351 (1990).

    Article  ADS  CAS  Google Scholar 

  22. Marchalonis, J. J. Biochem. J. 113, 673–675 (1969).

    Article  Google Scholar 

  23. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pflügers Arch. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalemans, W., Barbry, P., Champigny, G. et al. Altered chloride ion channel kinetics associated with the ΔF508 cystic fibrosis mutation. Nature 354, 526–528 (1991). https://doi.org/10.1038/354526a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/354526a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing