Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural motifs and potential a homologies in the large subunit of human general transcription factor TFIIE

Abstract

THE general transcription factor TFIIE has an essential role in eukaryotic transcription initiation together with RNA polymerase II and other general factors1,2. Human TFIIE consists of two subunits of relative molecular mass 57,000 (TFIIE-α) and 34,000 (TFIIE-β)3–5 and joins the preinitiation complex after RNA polymerase II and TFIIF (ref. 5). Here we report the cloning and structure of a complementary DNA encoding a functional human TFIIE-α. TFIIE-α is necessary for transcription initiation together with TFIIE-β, and recombinant TFIIE-α can fully replace the natural subunit in an in vitro transcription assay. The sequence contains several interesting structural motifs6 (leucine repeat, zinc finger and helix-turn-helix) and sequence similarities to bacterial a factors that suggest direct involvement in the regulation of transcription initiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Saltzman, A. G. & Weinmann, R. FASEB J. 3, 1723–1733 (1989).

    Article  CAS  Google Scholar 

  2. Sawadogo, M. & Sentenac, A. A. Rev. Biochem. 59, 711–754 (1990).

    Article  CAS  Google Scholar 

  3. Ohkuma, Y., Sumimoto, H., Horikoshi, M. & Roeder, R. G. Proc. natn. Acad. Sci. U.S.A. 87, 9163–9167 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Conaway, J. W., Hanley, J., Garrett, K. P. & Conaway, R. C. J. biol. Chem. 266, 7804–7811 (1991).

    CAS  PubMed  Google Scholar 

  5. Inostroza, J., Flores, O. & Reinberg, D. J. biol. Chem. 266, 9304–9308 (1991).

    CAS  Google Scholar 

  6. Johnson, P. F. & McKnight, S. L. A. Rev. Biochem. 58, 799–839 (1989).

    Article  CAS  Google Scholar 

  7. Hirata, M. et al. Nature 349, 617–620 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Scheidereit, C. et al. Nature 336, 551–557 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Sawadogo, M. & Roeder, R. G. Proc. natn. Acad. Sci. U.S.A. 82, 4394–4398 (1985).

    Article  ADS  CAS  Google Scholar 

  10. Horikoshi, M., Yamamoto, T., Ohkuma, Y., Weil, P. A. & Roeder R. G. Cell 61, 1171–1178 (1990).

    Article  CAS  Google Scholar 

  11. Studier, F. W., Rosenberg, A. H., Dunn, J. J. & Dubendorff, J. W. Meth. Enzym. 185, 60–89 (1990).

    Article  CAS  Google Scholar 

  12. Malik, S. et al. Proc. natn. Acad. Sci. U.S.A. (in the press).

  13. Sumimoto, H., Ohkuma, Y., Yamamoto, T., Horikoshi, M. & Roeder, R. G. Proc. natn. Acad. Sci. U.S.A. 87, 9158–9162 (1990).

    Article  ADS  CAS  Google Scholar 

  14. Helmann, J. D. & Chamberlin, M. J. A. Rev. Biochem. 57, 839–872 (1988).

    Article  CAS  Google Scholar 

  15. McCracken, S. & Greenblatt, J. Science 253, 900–902 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Flores, O., Maldonado, E. & Reinberg, D. J. biol. Chem. 264, 8913–8921 (1989).

    CAS  Google Scholar 

  17. Miller, J., McLachlan, A. D. & Klug, A. EMBO J. 4, 1609–1614 (1985).

    Article  CAS  Google Scholar 

  18. Rosenberg, U. B. et al. Nature 319, 336–339 (1986).

    Article  ADS  CAS  Google Scholar 

  19. Hirashima, S., Hirai, H., Nakanishi, Y. & Natori, S. J. biol. Chem. 263, 3858–3363 (1988).

    CAS  PubMed  Google Scholar 

  20. Allison, L. A., Moyle, M., Shales, M. & Ingles, C. J. Cell 42, 599–610 (1985).

    Article  CAS  Google Scholar 

  21. Broyles, S. S. & Moss, B. Proc. natn. Acad. Sci. U.S.A. 83, 3141–3145 (1986).

    Article  ADS  CAS  Google Scholar 

  22. Ollis, D. L., Brick, P., Hamlin, R., Xuong, N. G. & Steiz, T. A. Nature 313, 762–766 (1985).

    Article  ADS  CAS  Google Scholar 

  23. Ptashne, M. Nature 335, 683–689 (1988).

    Article  ADS  CAS  Google Scholar 

  24. Sumimoto, H. et al. Nature 354, 401–404 (1991).

    Article  ADS  CAS  Google Scholar 

  25. Horikoshi, M., Carey, M. F., Kakidani, H. & Roeder, R. G. Cell 54, 665–669 (1988).

    Article  CAS  Google Scholar 

  26. Horikoshi, M. et al. Nature 341, 299–303 (1989).

    Article  ADS  CAS  Google Scholar 

  27. Lin, Y.-S. & Green, M. R. Cell 64, 971–981 (1991).

    Article  CAS  Google Scholar 

  28. Woychik, N. A. & Young, R. A. Trends biol. Sci. 15, 347–351 (1990).

    Article  CAS  Google Scholar 

  29. Kozak, M. Cell 44, 283–292 (1986).

    Article  CAS  Google Scholar 

  30. Hoffmann, A. et al. Nature 346, 387–390 (1990).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohkuma, Y., Sumimoto, H., Hoffmann, A. et al. Structural motifs and potential a homologies in the large subunit of human general transcription factor TFIIE. Nature 354, 398–401 (1991). https://doi.org/10.1038/354398a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/354398a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing