Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The generation of plankton patchiness by turbulent stirring

Abstract

Diffusive processes are often used to represent the formation of spatial patterns in biological systems1. Here I show how patchiness may be generated in planktonic ecosystems through non-diffusive advection. Plankton distributions in oceanic surface waters can be characterized by the spectra of concentrations obtained along ship transects. Such spectra are inevitably found to have a power-law form over horizontal scales ranging from 1 to 100 km (ref. 2). Phytoplankton have distributions similar to those of physical quantities such as sea surface temperature, with much less variability at shorter length scales. In contrast, zooplankton density may be almost as variable at short scales as long ones3. Distributions of this form are generated in a model of the turbulent stirring of coupled phytoplankton and zooplankton populations. The characteristic spatial patterns of the phytoplankton and zooplankton are a consequence of the timescales of their response to changes in their environment caused by turbulent advection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The phytoplankton carrying capacity relaxes towards a smoothly varying background value at a rate α, following equation 1.
Figure 2: Snapshots at the end of a high-resolution model run.
Figure 3: A representative transect and the corresponding spectra.
Figure 4: The dependence of the spectral exponents of the phytoplankton (green) and zooplankton (red) populations on the model parameters.

Similar content being viewed by others

References

  1. Okubo, A. Biomathematics Vol. 10 , Diffusion and Ecological Problems: Mathematical Models (Springer, Berlin, 1980).

    Google Scholar 

  2. Mackas, D. L. & Boyd, C. M. Spectral analysis of zooplankton spatial heterogeneity. Science 204, 62–64 (1979).

    Article  ADS  CAS  Google Scholar 

  3. Tsuda, A., Sugisaki, H., Ishimaru, T., Saino, T. & Sato, T. White-noise-like distribution of the oceanic copepod Neocalanus cristatus in the subarctic North Pacific. Mar. Ecol. Prog. Ser. 97, 39–46 (1993).

    Article  ADS  Google Scholar 

  4. Okubo, A. Oceanic diffusion diagrams. Deep Sea Res. 18, 789–802 (1971).

    Google Scholar 

  5. Levin, S. A. & Segel, L. A. Hypothesis for origin of plankton patchiness. Nature 259, 659 (1976).

    Article  ADS  Google Scholar 

  6. Wroblewski, J. S. & O'Brien, J. J. Aspatial model of phytoplankton patchiness. Mar. Biol. 35, 161–175 (1976).

    Article  Google Scholar 

  7. Steele, J. H. & Henderson, E. W. Asimple model for plankton patchiness. J. Plankton Res. 14, 1397–1403 (1992).

    Article  Google Scholar 

  8. Malchow, H. Nonequilibrium structures in plankton dynamics. Ecol. Model. 75/76, 123–134 (1994).

    Article  Google Scholar 

  9. Parsons, T. R., Takahashi, M. & Hargrave, B. Biological Oceanographic Processes, 3rd edn (Pergamon, Oxford, 1984).

    Google Scholar 

  10. Kierstead, H. & Slobodkin, L. B. The size of water masses containing plankton blooms. J. Mar. Res. 12, 141–147 (1953).

    Google Scholar 

  11. Klein, P. & Hua, B. L. The mesoscale variability of the sea surface temperature: An analytical and numerical model. J. Mar. Res. 48, 729–763 (1990).

    Article  Google Scholar 

  12. Kiorboe, T. & Sabatini, M. 1995 Scaling of fecundity, growth and development in marine planktonic copepods. Mar. Ecol. Prog. Ser. 120, 285–298 (1995).

    Article  ADS  Google Scholar 

  13. Denman, K. L. & Platt, T. The variance spectrum of phytoplankton in a turbulent ocean. J. Mar. Res. 34, 593–601 (1976).

    Google Scholar 

  14. Gower, J. F. R., Denman, K. L. & Holyer, R. J. Phytoplankton patchiness indicates the fluctuation spectrum of mesoscale oceanic structure. Nature 288, 157–159 (1980).

    Article  ADS  Google Scholar 

  15. Lesieur, M. & Sadourny, R. Satellite-sensed turbulent ocean structure. Nature 294, 673 (1981).

    Article  ADS  Google Scholar 

  16. Bennett, A. F. & Denman, K. L. Phytoplankton patchiness: inferences from particle statistics. J. Mar. Res. 43, 307–335 (1985).

    Article  CAS  Google Scholar 

  17. Holloway, G. Eddies, waves, circulation and mixing: statistical geofluid mechanics. Annu. Rev. Fluid Mech. 18, 91–147 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  18. Powell, T. M. & Okubo, A. Turbulence, diffusion and patchiness in the sea. Phil. Trans. R. Soc. Lond. B 343, 11–18 (1994).

    Article  ADS  Google Scholar 

  19. Dyke, P. P. G. & Robertson, T. The simulation of offshore turbulent dispersion using seeded eddies. Appl. Math. Model. 9, 429–433 (1985).

    Article  Google Scholar 

  20. Trathan, P. N., Priddle, J., Watkins, J. L., Miller, D. G. M. & Murray, A. W. A. Spatial variabiity of Antarctic krill in relation to mesoscale hydrography. Mar. Ecol. Prog. Ser. 98, 61–71 (1993).

    Article  ADS  Google Scholar 

  21. Renka, R. J. Triangulation and interpolation at arbitrarily distributed points in the plane. ACM Trans. Math. Software 10, 440–442 (1984).

    Article  MathSciNet  Google Scholar 

  22. Deschamps, P. Y., Frouin, R. & Wald, L. Satellite determinations of the mesoscale variability of the sea surface temperature. J. Phys. Oceanogr. 11, 864–870 (1981).

    Article  ADS  Google Scholar 

  23. Mackas, D. L., Denman, K. L. & Abbot, M. R. Plankton patchiness: biology in the physical vernacular. Bull. Mar. Sci. 37, 652–674 (1985).

    Google Scholar 

  24. Smith, C. L., Richards, K. J. & Fasham, M. J. R. The impact of mesoscale eddies on plankton dynamics in the upper ocean. Deep Sea Res. I 43, 1807–1832 (1996).

    Article  CAS  Google Scholar 

  25. Armi, L. & Flament, P. Cautionary remarks on the spectral interpretation of turbulent flows. J. Geophys. Res. C90, 11779–11782 (1985).

    Article  ADS  Google Scholar 

  26. Piontkovski, S. A. et al. Spatial heterogeneity of the planktonic fields in the upper mixed layer of the open ocean. Mar. Ecol. Prog. Ser. 148, 145–154 (1997).

    Article  ADS  Google Scholar 

  27. Fasham, M. J. R. in Spatial Pattern in Plankton Communities (ed. Steele, J. H.) 131–156 (Plenum, New York, 1978).

    Book  Google Scholar 

  28. Gallagher, S. M., Davis, C. S., Epstein, A. W., Solow, A. & Beardsley, R. C. High-resolution observations of plankton spatial distributions correlated with hydrography in the Great South Channel, Geoges Bank. Deep Sea Res. II 43, 1627–1663 (1996).

    Article  ADS  Google Scholar 

  29. Charney, J. G. Geostrophic turbulence. J. Atmos. Sci. 28, 1087–1095 (1971).

    Article  ADS  Google Scholar 

  30. Middleton, J. F. Drifter spectra and diffusivities. J. Mar. Res. 43, 37–55 (1985).

    Article  Google Scholar 

Download references

Acknowledgements

I thank P. Boyd, P. Sutton, C. Stevens and J. Sharples for critical reading of the draft manuscript, and R. Renka for software made available through the TOMS internet archive that was used to interpolate the Lagrangian variables onto a regular grid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward R. Abraham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abraham, E. The generation of plankton patchiness by turbulent stirring. Nature 391, 577–580 (1998). https://doi.org/10.1038/35361

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35361

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing