Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A product of the prune locus of Drosophila is similar to mammalian GTPase-activating protein

Abstract

THE X-linked prune (pn) eye-colour mutation of Drosophila melanogaster has a highly specific, complementary lethal interaction with the conditional dominant Killer of prune (awdK-pn) mutation1,2. Although awdK-pn flies have no apparent phenotype on their own, pn awdK-pn double mutants die as second or third larval instars. The awd locus encodes a nucleoside diphosphate kinase3, an enzyme that catalyses the transfer of high-energy phosphate bonds between nucleoside diphosphates and nucleoside triphosphates4, which is essential for the normal development of Drosophila. Analysis of the pn locus has suggested that the complementary DNA, TcD37, encodes a putative pn+ product5. Here we report the nucleotide sequence of TcD37 and the similarity of its deduced protein product to the catalytic domain of mammalian GTPase-activating proteins (GAPs); GAPs stimulate the GTPase activity of Ras (ref. 6), which are plasma membrane-bound proteins involved in the regulation of cell proliferation and differentiation7. These results suggest that the Drosophila TcD37 protein participates in a biochemical pathway similar to that of Ras and GAPs in mammals and yeast. We propose that the interaction between pn and awd is due to a neomorphic mutation that enhances the ability of AwdK-pn nucleoside diphosphate kinase to induce a regulatory GTPase into a GTP-bound 'on' state, whereas Pn modulates the activity of this GTPase either by switching it to a GDP-bound 'off' state or by interfering with its effector function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sturtevant, A. H. Genetics 41, 118–123 (1956).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Biggs, J., Tripoulas, N., Hesperger, E., Dearolf, C. & Shearn, A. Genes Dev. 2, 1333–1343 (1988).

    Article  CAS  Google Scholar 

  3. Biggs, J., Hesperger, E., Steeg, P. S., Liotta, L. A. & Shearn, A. Cell 63, 933–940 (1990).

    Article  CAS  Google Scholar 

  4. Parks, R. E. J. & Agarwal, R. P. in The Enzymes (ed. Boyer, P. D.) 307–344 (Academic, New York, 1973).

    Google Scholar 

  5. Teng, D. H. F., Bender, L. B., Engele, C. M., Tsubota, S. & Venkatesh, T. Genetics 128, 373–380 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Vogel, U. S. et al. Nature 335, 90–93 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Bourne, H. R., Sanders, D. A. & McCormick, F. Nature 348, 125–132 (1990).

    Article  ADS  CAS  Google Scholar 

  8. Evans, B. A. & Howells, A. J. Biochem. Genet. 16, 13–26 (1978).

    Article  CAS  Google Scholar 

  9. Mackay, W. J. & O'Donnell, J. M. Genetics 105, 35–53 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Brown, G. M. Chemistry and Biochemistry of Pterins (eds Blakley, R. L. & Benkovic, S. J.) 115–154 (Wiley, New York, 1985).

    Google Scholar 

  11. MacLean, J. R., Boswell, R. & O'Donnell, J. Genetics 126, 1007–1019 (1990).

    Google Scholar 

  12. Dearolf, C. R., Hesperger, E. & Shearn, A. Devl. Biol. 129, 159–168 (1988).

    Article  CAS  Google Scholar 

  13. Wallet, V. et al. J. natn. Cancer Inst. 82, 1199–1202 (1990).

    Article  CAS  Google Scholar 

  14. Kozak, M. Nucleic Acids Res. 12, 857–872 (1984).

    Article  CAS  Google Scholar 

  15. Marshall, M. S. et al. EMBO J. 8, 1105–1110 (1989).

    Article  CAS  Google Scholar 

  16. Trahey, M. et al. Science 242, 1697–1700 (1988).

    Article  ADS  CAS  Google Scholar 

  17. Xu, G. et al. Cell 62, 599–608 (1990).

    Article  CAS  Google Scholar 

  18. Xu, G. et al. Cell 63, 835–841 (1990).

    Article  CAS  Google Scholar 

  19. Martin, G. A. et al. Cell 63, 843–849 (1990).

    Article  CAS  Google Scholar 

  20. Ballester, R. et al. Cell 63, 851–859 (1990).

    Article  CAS  Google Scholar 

  21. Tanaka, K. et al. Cell 60, 803–807 (1990).

    Article  CAS  Google Scholar 

  22. Tanaka, K., Lin, B. K., Wood, D. R. & Tamanoi, F. Proc. natn. Acad. Sci. U.S.A. 88, 468–472 (1991).

    Article  ADS  CAS  Google Scholar 

  23. Colicelli, J. et al. Proc. natn. Acad. Sci. U.S.A. 88, 2913–2917 (1991).

    Article  ADS  CAS  Google Scholar 

  24. Rubinfeld, B. et al. Cell 65, 1033–1042 (1991).

    Article  CAS  Google Scholar 

  25. Bourne, H. R., Sanders, D. A. & McCormick, F. Nature 349, 117–126 (1991).

    Article  ADS  CAS  Google Scholar 

  26. Garrett, M. D., Self, A. J., van Oers, C. & Hall, A. J. J. biol. Chem. 264, 10–13 (1989).

    CAS  Google Scholar 

  27. Burstein, E. S., Linko-Stentz, K., Lu, Z. & Macara, I. G. J. biol. Chem. 266, 2689–2692 (1991).

    CAS  PubMed  Google Scholar 

  28. Emkey, R., Freedman, S. & Feig, L. A. J. biol. Chem. 266, 9703–9706 (1991).

    CAS  PubMed  Google Scholar 

  29. Liotta, L. A. & Steeg, P. S. J. natn. Cancer Inst. 82, 1170–1172 (1990).

    Article  CAS  Google Scholar 

  30. Liotta, L. A., Steeg, P. S. & Stetler-Stevenson, W. G. Cell 64, 327–336 (1991).

    Article  CAS  Google Scholar 

  31. Henikoff, S. Meth. Enzym. 155, 156–165 (1987).

    Article  CAS  Google Scholar 

  32. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 546–5467 (1977).

    Article  Google Scholar 

  33. Hultmark, D., Klemenz, R. & Gehring, W. Cell 44, 429–438 (1986).

    Article  CAS  Google Scholar 

  34. O'Hare, K. & Rubin, G. M. Cell 34, 25–35 (1983).

    Article  CAS  Google Scholar 

  35. Kyte, J. & Doolittle, R. F. J. molec. Biol. 157, 105–132 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teng, D., Engele, C. & Venkatesh, T. A product of the prune locus of Drosophila is similar to mammalian GTPase-activating protein. Nature 353, 437–440 (1991). https://doi.org/10.1038/353437a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/353437a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing