Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Antibiotic inhibition of group I ribozyme function

Abstract

THE discovery of catalytically active RNA has provided the basis for the evolutionary concept of an RNA world. It has been proposed that during evolution the functions of ancient catalytic RNA were modulated by low molecular weight effectors, related to antibiotics, present in the primordial soup. Antibiotics and RNA may have coevolved in the formation of the modern ribosome1. Here we report that a set of aminoglycoside antibiotics, which are known to interact with the decoding region of the 16S ribosomal RNA of Escherichia coli2–4, inhibit the second step of splicing of the T4 phage-derived td intron. Thus catalytic RNA seems to interact not only with a mononucleotide5 and an amino acid6, but also with another class of biomolecules, the sugars. Splicing of other group I introns but not group II introns was inhibited. The similarity in affinity and specificity of these antibiotics for group I introns and rRNAs may result from recognition of evolutionarily conserved structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Davies, J. Molec. Microbiol. 4, 1227–1232 (1990).

    Article  CAS  Google Scholar 

  2. Moazed, D. & Noller, H. F. Nature 327, 389–394 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Noller, H. F. A. Rev. Biochem. 53, 119–162 (1984).

    Article  CAS  Google Scholar 

  4. Cundliffe, E. in The Ribosome (eds Hill, W. E. et al.) 479–490 (Am. Soc. Microbiol., Washington 1990).

    Google Scholar 

  5. Bass, B. & Cech, T. R. Biochemistry 25, 4473–4477 (1986).

    Article  CAS  Google Scholar 

  6. Yarus, M. Science 240, 1751–1758 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Cech, T. R. A Rev. Biochem. 59, 543–568 (1990).

    Article  CAS  Google Scholar 

  8. Schroeder, R., von Ahsen, U. & Belfort, M. Biochemistry 30, 3295–3303 (1991).

    Article  CAS  Google Scholar 

  9. Ehrenman, K. et al. Proc. natn. Acad. Sci. USA 83, 5875–5879 (1986).

    Article  ADS  CAS  Google Scholar 

  10. Michel, F., Hanna, M., Green, R., Bartel, D. P. & Szostak, J. W. Nature 342, 391–395 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Burke, J. M., Esherik, J. S., Burfeind, W. R. & King, J. Nature 344, 80–82 (1990).

    Article  ADS  CAS  Google Scholar 

  12. Michel, F. & Westhof, E. J. molec. Biol. 216, 585–610 (1990).

    Article  CAS  Google Scholar 

  13. Ahsen von, U. & Schroeder, R. Nucleic Acids Res. 19, 2261–2265 (1991).

    Article  Google Scholar 

  14. Ahsen von, U. & Schroeder, R. Nature 346, 801 (1990).

    Article  ADS  Google Scholar 

  15. Benveniste, R. & Davies, J. Antimicrob. Agents Chemother. 4, 402–409 (1973).

    Article  CAS  Google Scholar 

  16. Yarus, M. & Christian, E. L. Nature 342, 349–350 (1990).

    Article  ADS  Google Scholar 

  17. Akins, R. & Lambowitz, A. Cell 50, 331–345 (1987).

    Article  CAS  Google Scholar 

  18. Herbert, C. Labouesse, M., Dujardin, G. & Slonimski, P. P. EMBO J. 7, 473–483 (1988).

    Article  CAS  Google Scholar 

  19. Seraphin, B. Simon, M., Boulet, A. & Faye, G. Nature 337, 84–87 (1989).

    Article  ADS  CAS  Google Scholar 

  20. Gale, E. F. in Biochemical Studies of Antimicrobial Drugs (eds Newton, B. A. & Reynolds, P. E.) 1–21 (Cambridge University Press, Cambridge, 1966).

    Google Scholar 

  21. Salvo, J. L. G., Coetzee, T. & Belfort, M. J. molec. Biol. 211, 537–549 (1990).

    Article  CAS  Google Scholar 

  22. Michel, F., Netter, P., Xu, M.-Q. & Shub, D. Genes Dev. 4, 777–788 (1990).

    Article  CAS  Google Scholar 

  23. Davies, J. & Yagisawa, M. in Biochemistry and Genetic Regulation of Commercially Important Antibiotics (ed. Vining, L. C.) 329–354 (Addison-Wesley, London, 1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Ahsen, U., Davies, J. & Schroeder, R. Antibiotic inhibition of group I ribozyme function. Nature 353, 368–370 (1991). https://doi.org/10.1038/353368a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/353368a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing