Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Relationship of deep seismicity to the thermal structure of subducted lithosphere

Abstract

RECENT experimental work on silicate olivine polymorphs1 has confirmed earlier observations of mechanical failure in analogous compounds2,3 as a result of phase transformations when non-hydrostatic stresses were applied to a metastable phase. This 'transformational faulting'4 mechanism is considered to be a leading candidate5, among others involving olivine transformation6,7, for the cause of deep earthquakes. Evidence consistent with this mechanism comes from the observation2–4 that, worldwide, earthquakes become more numerous with increasing depth after a seismicity minimum at about 350 km depth8. This depth lies within the range anticipated for mineralogical transformations in the subducted lithosphere9. But individual subduction zones differ in their thermal structures, so if transformational faulting indeed contributes to deep seismicity, this should be reflected in the location of the seismicity minimum for each zone. The depth at which the minimum occurs should depend on temperature in the same way as do the polymorphic transformations of olivine, and should always lie deeper than the depth at which the equilibrium transformation takes place. Here we test these predictions for eight subduction zones worldwide. We find that, with one exception (the North Japan zone), the depth of the seismicity minimum decreases linearly with increasing thermal age of the slab (a measure of its temperature profile). These results support the proposal that deep earthquakes are a consequence of phase transformations in olivine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Green, H. W., Young, T. E., Walker, D., Scholz, C. & Prior, D. Trans. Am. Geophys. Un. 71, 946 (1990).

    Article  Google Scholar 

  2. Kirby, S. H. J. geophys. Res. 92, 13789–13800 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Green, H. W. & Burnley, P. C. Nature 341, 733–737 (1989).

    Article  ADS  Google Scholar 

  4. Kirby, S. H., Durham, W. B. & Stern, L. A. Science 252, 216–225 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Kirby, S. H. Trans. Am. Geophys. Un. 71, 946 (1990).

    Article  Google Scholar 

  6. Rubie, D. C. Nature 308, 505–508 (1984).

    Article  ADS  CAS  Google Scholar 

  7. Lomnitz-Adler, J. J. Phys. Earth 38, 83–98 (1990).

    Article  Google Scholar 

  8. Frohlich, C. Ann. Rev. Earth planet. Sci. 17, 227–254 (1989).

    Article  ADS  Google Scholar 

  9. Akaogi, M., Ito, E. & Navrotsky, A. J. geophys. Res. 94, 15671–15685 (1989).

    Article  ADS  Google Scholar 

  10. Brodholt, J. & Stein, S. Geophys. Res. Lett. 15, 1081–1084 (1988).

    Article  ADS  Google Scholar 

  11. Vassiliou, M. S., Hager, B. H. & Raefsky, A., J. Geodynam. 1, 11–28 (1984).

    Article  ADS  Google Scholar 

  12. Wortel, R. Nature 296, 553–556 (1982).

    Article  ADS  Google Scholar 

  13. Wortel, R. Geophys. Res. Lett. 13, 34–37 (1986).

    Article  ADS  Google Scholar 

  14. Wortel, R. & Vlaar, N. J. Pure appl. Geophys. 128, 625–659 (1988).

    Article  ADS  Google Scholar 

  15. Meade, C. & Jeanloz, R. Science 252, 68–72 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Bina, C. R. & Wood, B. J. J. geophys. Res. 92, 4853–4866 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Molnar, P., Freedman, C. & Shin, J. F. Geophys. J. R. astr. Soc. 56, 41–54 (1979).

    Article  ADS  Google Scholar 

  18. Larson, R. L. et al. The Bedrock Geology of the World (map) (Freeman, New York, 1985).

    Google Scholar 

  19. Leg 129 shipboard scientific party Nature 345, 112 (1990).

  20. Jarrard, R. D. Rev. Geophys. 24, 217–284 (1986).

    Article  ADS  Google Scholar 

  21. Toksöz, M. N., Sleep, N. H. & Smith, A. T. Geophys. J. R. astr. Soc. 35, 285–310 (1973).

    Article  Google Scholar 

  22. DeMets, C., Gordon, R. G., Argus, D. F. & Stein, S. Geophys. J. Int. 101, 425–478 (1990).

    Article  ADS  Google Scholar 

  23. Geller, R. J. Bull. seism. Soc. Am. 66, 1501–1523 (1976).

    Google Scholar 

  24. Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vetterling, W. T. Numerical Recipes (Cambridge University Press, 1987).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helffrich, G., Brodholt, J. Relationship of deep seismicity to the thermal structure of subducted lithosphere. Nature 353, 252–255 (1991). https://doi.org/10.1038/353252a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/353252a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing