Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Wintertime asymmetry of upper tropospheric water between the Northern and Southern Hemispheres

Abstract

WATER vapour is an important greenhouse gas1–3 and yet its abundance in the upper troposphere is poorly known. Upper-tropospheric water vapour is particularly important despite its low mixing ratios, because it has large effects on the flux of infrared radiation near the tropopause2. In addition, the distribution and supply of water vapour are central to cloud formation; the effects of cloud on the Earth's radiation budget are in turn central to understanding the climate response to increasing atmospheric concentrations of greenhouse gases. From airborne measurements of total water (vapour plus ice crystal)4 during the winters of 1987 in the Southern Hemisphere and of 1988–89 in the Northern Hemisphere, we find that the upper troposphere in middle, subpolar and high latitudes is a factor of 2–4 drier during austral winter than during boreal winter. As the lower-latitude air moves towards the pole in austral winter, it is forced to cool to lower temperatures than in the north—more of the water vapour therefore condenses to form ice crystals, which then precipitate, thereby removing moisture from the air mass. Clearly, climate models must be able to reproduce this asymmetry if their predictions are to be credible. We also note that the asymmetry in water vapour implies an asymmetry in the production rate of the hydroxyl radical, and hence in the tropospheric chemistry of each hemisphere, for example in the rate of methane loss5.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tyndall, J. Phil. Trans. R. Soc. A151, 1–36 (1861).

    Article  ADS  Google Scholar 

  2. Ludlam, F. H. Clouds and Storms Ch. 1 (Pennsylvania State University Press, 1980).

    Google Scholar 

  3. Doherty, G. M. & Newell, R. E. Tellus B36, 149–162 (1984).

    Article  Google Scholar 

  4. Kelly, K. K. et al. J. geophys. Res. 94, 11317–11357 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Vaghjiami, G. L. & Ravishankara, A. R. Nature 350, 406–409 (1991).

    Article  ADS  Google Scholar 

  6. Murphy, D. M., Kelly, K. K., Tuck, A. F., Proffitt, M. H. & Kinne, S. Geophys. Res. Lett. 17, 353–356 (1990).

    Article  ADS  Google Scholar 

  7. Kelly, K. K. et al. Geophys. Res. Lett. 17, 465–468 (1990).

    Article  ADS  Google Scholar 

  8. Somerville, R. C. J. & Remer, L. A. J. geophys. Res. 89, 9668–9672 (1984).

    Article  ADS  CAS  Google Scholar 

  9. Mitchell, J. F. B., Senior, C. A. & Ingram, W. J. Nature 341, 132–134 (1989).

    Article  ADS  Google Scholar 

  10. Komhyr, W. D. et al. J. geophys. Res. 94, 11429–11436 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Monthly Mean Aerological Cross-sections Pole to Pole Along Meridian 75° W for the IGY Period (US Weather Bureau, 1961).

  12. MacDowall, J. Proc. R. Soc. A256, 149–197 (1960).

    ADS  Google Scholar 

  13. Prantner, G. D. World Met. Org. No. 211, 324–344 (1967).

  14. Salter, P. R. S. & Merrick, S. D. Met. Mag. 118, 59–63 (1989).

    Google Scholar 

  15. Schwerdtfeger, W. Weather and Climate in the Antarctic Ch. 4 (Elsevier, 1984).

    Google Scholar 

  16. Tuck, A. F. J. geophys. Res. 94, 11687–11737 (1989).

    Article  ADS  CAS  Google Scholar 

  17. Poole, L. R. et al. Geophys. Res. Lett. 17, 389–392 (1990).

    Article  ADS  Google Scholar 

  18. Jones, R. L., McKenna, D. S., Poole, L. R. & Solomon, S. Geophys. Res. Lett. 17, 545–548 (1990).

    Article  ADS  Google Scholar 

  19. McMurdie, L. A. & Katsaros, K. B. Mon. Weath. Rev. 119, 589–605 (1991).

    Article  ADS  Google Scholar 

  20. Peixoto, J. P. & Oort, A. H., Variations in the Global Water Budget, 5–66 (Reidel, 1983).

    Book  Google Scholar 

  21. Jaeger, L. Variations in the Global Water budget, 129–140 (Reidel, 1983).

    Book  Google Scholar 

  22. Shea, D. J., Trenbierth, K. E. & Reynolds, R. W. NCAR tech. Note TN-345 +STR (1990).

  23. Peixoto, J. P. Nordic Hydrol. 2, 120–138 (1970).

    Article  Google Scholar 

  24. Ramanathan, V. & Collins, W. Nature 351, 27–32 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelly, K., Tuck, A. & Davies, T. Wintertime asymmetry of upper tropospheric water between the Northern and Southern Hemispheres. Nature 353, 244–247 (1991). https://doi.org/10.1038/353244a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/353244a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing