Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Convergent evolution of similar function in two structurally divergent enzymes

Abstract

AN example of two related enzymes that catalyse similar reactions but possess different active sites is provided by comparing the structure of Escherichia coli thioredoxin reductase with glutathione reductase1. Both are dimeric enzymes that catalyse the reduction of disulphides by pyridine nucleotides through an enzyme disulphide and a flavin2 . Human glutathione reductase contains four structural domains within each molecule: the flavin–adenine dinucleotide (FAD)- and nicotinamide–adenine dinucleotide phosphate (NADPH)-binding domains, the 'central' domain and the C-terminal domain that provides the dimer interface and part of the active site3,4. Although both enzymes share the same catalytic mechanism and similar tertiary structures, their active sites do not resemble each other5,6. We have determined the crystal structure of E. coli thioredoxin reductase at 2 Å resolution, and show that thioredoxin reductase lacks the domain that provides the dimer interface in glutathione reductase, and forms a completely different dimeric structure. The catalytically active disulphides are located in different domains on opposite sides of the flavin ring system. This suggests that these enzymes diverged from an ancestral nucleotide-binding protein and acquired their disulphide reductase activities independently.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Karplus, P. A. & Schulz, G. E. J. molec. Biol. 195, 701–729 (1987).

    Article  CAS  Google Scholar 

  2. Williams, C. H. Jr The Enzymes 3rd edn 13, 89–173 (1976).

    Article  CAS  Google Scholar 

  3. Schirmer, R. H. & Schulz, G. E. in Pyridine Nucleotide Coenzymes Part B (Coenzymes and Cofactors) Vol. 2 (eds Dolphin, D., Poulson, R. & Avramovic, O. 333–379 (Wiley New York, 1987).

    Google Scholar 

  4. Thieme, R., Pai, E. F., Schirmer, R. H. & Schulz, G. E. J. molec. Biol. 152, 763–782 (1981).

    Article  CAS  Google Scholar 

  5. Russel, M. & Model, P. J. biol. Chem. 263, 9015–9019 (1988).

    CAS  PubMed  Google Scholar 

  6. Williams, C. H., Jr., Prongay, A. J., Lennon, B. W. & Kuriyan, J., in Flavins and Flavoproteins (eds Curti, B., Zannetti, G. & Ronchi, S.) (de Gruyter, Berlin, in the press).

  7. Holmgren, A. J. biol. Chem. 264, 13963–13966 (1989).

    CAS  PubMed  Google Scholar 

  8. Chothia, C. & Lesk, A. M. EMBO J. 5, 823–826 (1986).

    Article  CAS  Google Scholar 

  9. Rossmann, M. G., A., Liljas, C. I., Bränden & Benaszak, L. J. in The Enzymes (ed. Boyer. P. D.) 61–102 (Academic, New York, 1975).

    Google Scholar 

  10. Schulz, G. E. J. molec. Biol. 145, 335–347 (1980).

    Article  Google Scholar 

  11. Wierenga, R. K., Drenth, J. & Schulz, G. E. J. molec. Biol. 167, 725–739 (1983).

    Article  CAS  Google Scholar 

  12. O'Donnell, M. E. & Williams, C. H. Jr Biochemistry 24, 7617–7621 (1985).

    Article  CAS  Google Scholar 

  13. Karplus, P. A. & Schulz, G. E. J. molec. Biol. 210, 163–180 (1989).

    Article  CAS  Google Scholar 

  14. O'Donnell, M. E. & Williams, C. H. Jr J. biol. Chem. 258, 13795–13805 (1983).

    CAS  PubMed  Google Scholar 

  15. Royer, W. E. J., Hendrickson, W. A. & Chiancone, E. Science 249, 518–521 (1990).

    Article  ADS  CAS  Google Scholar 

  16. Prongay, A. J., Engelke, D. R. & Williams, C. H. Jr J. biol. Chem. 264, 2656–2664 (1989).

    CAS  PubMed  Google Scholar 

  17. Kuriyan, J., Wong, L., Russel, M. & Model, P. J. biol. Chem. 264, 12752–12753 (1989).

    CAS  PubMed  Google Scholar 

  18. Terwilliger, T. C. & Eisenberg, D. Acta crystallogr. A39, 813–817 (1983).

    Article  CAS  Google Scholar 

  19. Wang, B. C. Meth. Enzym. 115, 90–112 (1985).

    Article  CAS  Google Scholar 

  20. Brünger, A. T., Kuriyan, J. & Karplus, M. Science 235, 458–460 (1987).

    Article  ADS  Google Scholar 

  21. Brünger, A. T. X-PLOR (Version 1.5) Manual (The Howard Hughes Medical Institute and Department of Molecular Biophysics and Biochemistry, Yale University, Connecticut, 1988).

    Google Scholar 

  22. Jones, T. A. & Thirup, S. EMBO J. 5, 819–822 (1986).

    Article  CAS  Google Scholar 

  23. Ramachandran, G. N. & Sasisekharan, V. Adv. Protein Chem. 23, 283–437 (1968).

    Article  CAS  Google Scholar 

  24. Kabsch, W. & Sander, C. Biopolymers 22, 2577–2637 (1983).

    Article  CAS  Google Scholar 

  25. Priestle, J. P. J. appl. Crystallogr. 21, 572–576 (1988).

    Article  Google Scholar 

  26. Lee, B. K. & Richards, F. M. J. molec. Biol. 55, 379–400 (1971).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuriyan, J., Krishna, T., Wong, L. et al. Convergent evolution of similar function in two structurally divergent enzymes. Nature 352, 172–174 (1991). https://doi.org/10.1038/352172a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/352172a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing