Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Depth is encoded in the visual cortex by a specialized receptive field structure

Abstract

BINOCULAR neurons in the visual cortex are thought to perform the first stage of processing for the fine stereoscopic depth discrimination exhibited by animals with frontally located eyes. Because lateral separation of the eyes gives a slightly different view to each eye, there are small variations in position (disparities), mainly along the horizontal dimension, between corresponding features in the two retinal images. The visual system uses these disparities to gauge depth. We studied neurons in the cat's visual cortex to determine whether the visual system uses the anisotropy in the range of horizontal and vertical disparities. We report here that there is a corresponding anisotropy in the cortical representation of binocular information: receptive-field profiles for left and right eyes are matched for cells that are tuned to horizontal orientations of image contours. For neurons tuned to vertical orientations, left and right receptive fields are predominantly dissimilar. Therefore, a major modification is required of the conventional notion of disparity processing. The modified scheme allows a unified encoding of monocular form and binocular disparity information.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Barlow, H. B., Blakemore, C. & Pettigrew, J. D. J. Physiol. 193, 327–342 (1967).

    Article  CAS  Google Scholar 

  2. Poggio, G. F. & Fischer, B. J. Neurophysiol. 40, 1392–1405 (1977).

    Article  CAS  Google Scholar 

  3. von der Heydt, R., Adorjani, C. S., Hanny, P. & Baumgartner, G. Expl Brain Res. 31, 523–545 (1978).

    Article  CAS  Google Scholar 

  4. Ferster, D. J. Physiol. 311, 623–655 (1981).

    Article  CAS  Google Scholar 

  5. Maske, R., Yamane, S. & Bishop, P. O. Vision Res. 24, 1921–1929 (1984).

    Article  CAS  Google Scholar 

  6. Hubel, D. H. & Wiesel, T. N. J. Physiol. 160, 106–154 (1962).

    Article  CAS  Google Scholar 

  7. Joshua, D. E. & Bishop, P. O. Expl Brain Res. 10, 389–416 (1970).

    Article  CAS  Google Scholar 

  8. Hubel, D. H. & Wiesel, T. N. J. Physiol. 232, 29–30 (1973).

    Google Scholar 

  9. LeVay, S. & Voigt, T. Visual Neurosci. 1, 395–414 (1988).

    Article  CAS  Google Scholar 

  10. Freeman, R. D. & Ohzawa, I. Vision Res. 30, 1661–1676 (1990).

    Article  CAS  Google Scholar 

  11. Marr, D. & Poggio, T. Proc. R. Soc. B 204, 301–328 (1979).

    ADS  CAS  Google Scholar 

  12. Gabor, D. J. Inst. electr. Eng. 93, 429–457 (1946).

    Google Scholar 

  13. Sakitt, B. & Barlow, H. B. Biol. Cybern. 43, 97–108 (1982).

    Article  CAS  Google Scholar 

  14. Freeman, R. D. & Robson, J. G. Expl Brain Res. 48, 296–300 (1982).

    Article  CAS  Google Scholar 

  15. DeValois, R. L., Albrecht, D. G. & Thorell, L. G. Vision Res. 22, 545–559 (1982).

    Article  CAS  Google Scholar 

  16. Jones, J. P. & Palmer, L. A. J. Neurophysiol. 58, 1187–1211 (1987).

    Article  CAS  Google Scholar 

  17. Marcelja, S. J. opt. Soc. Am. 70, 1297–1300 (1980).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  18. Daugman, J. G. J. opt. Soc. Am. 2, 1160–1169 (1985).

    Article  ADS  CAS  Google Scholar 

  19. Jones, J. P. & Palmer, L. A. J. Neurophysiol. 58, 1233–1258 (1987).

    Article  CAS  Google Scholar 

  20. Poggio, G. F., Gonzalez, F. & Krause, F. J. Neurosci. 8, 4531–4550 (1988).

    Article  CAS  Google Scholar 

  21. Nomura, M., Matsumoto, G. & Fujiwara, S. Biol. Cybern. 63, 237–242 (1990).

    Article  Google Scholar 

  22. Schor, C. M. & Wood, I. Vision Res. 23, 1649–1654 (1983).

    Article  CAS  Google Scholar 

  23. Schor, C. M., Wood, I. C. & Ogawa, J. Vision Res. 24, 573–578 (1984).

    Article  CAS  Google Scholar 

  24. Ohzawa, I., DeAngelis, G. C. & Freeman, R. D. Science 249, 1037–1041 (1990).

    Article  ADS  CAS  Google Scholar 

  25. Ohzawa, I. & Freeman, R. D. J. Neurophysiol. 56, 221–242 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeAngelis, G., Ohzawa, I. & Freeman, R. Depth is encoded in the visual cortex by a specialized receptive field structure. Nature 352, 156–159 (1991). https://doi.org/10.1038/352156a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/352156a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing