Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sulphated lipo-oligosaccharide signals of Rhizobium meliloti elicit root nodule organogenesis in alfalfa

Abstract

RHIZOBIUM meliloti is a symbiotic bacterium that elicits the morphogenesis of nitrogen-fixing nodules, specific organs on the roots of alfalfa (Medicago sativa)1. In R. meliloti a series of nodulation (nod) genes have been identified which are involved in root-hair curling and infection and in nodule formation1. The nodABC genes, common to all Rhizobium sp., and the host-range nodH and nodPQ genes are involved in the production of an excreted root-hair deforming factor, NodRm-1, which is a sul-phated and acylated glucosamine oligosaccharide2–7. Here we report that purified NodRm-1 and a related compound, Ac-Nod Rm-1, at concentrations in the micromolar–nanomolar range, elicit cortical cell divisions and the formation of genuine nodules on aseptically grown seedlings of alfalfa. Chemical modifications of NodRm-1, such as the removal of the sulphate group, reduction of the terminal sugar or hydrogenation of the acyl chain result in a strong decrease in the morphogenic activity. A highly specific prokaryotic lipo-oligosaccharide signal is thus able to trigger a genuine organogenesis in a higher plant.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Long, S. R. Cell 56, 203–214 (1989).

    Article  CAS  Google Scholar 

  2. Faucher, C. et al. J. Bact. 170, 5489–5499 (1988).

    Article  CAS  Google Scholar 

  3. Faucher, C., Camut, S., Dénarié, J. & Truchet, G. Molec. Pl. Microbe Interact. 2, 291–300 (1989).

    Article  Google Scholar 

  4. Lerouge, P. et al. Nature 344, 781–784 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Schwedock, J. & Long, S. R. Nature 348, 644–646 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Roche, P. et al. in Advances in Molecular Genetics of Plant-Microbe Interactions Vol 1 (eds Hennecke, H. & Verma, D. P. S.) 119–126 (Kluwer Academic, Dordrecht, 1991).

    Book  Google Scholar 

  7. Roche, P., Lerouge, P., Ponthus, C. & Promé, J. C. J. biol. Chem. (in the press).

  8. Dudley, M. E., Jacobs, T. W. & Long, S. R. Planta 171, 289–301 (1987).

    Article  CAS  Google Scholar 

  9. Truchet, G. et al. Molec. gen. Genet. 219, 65–68 (1989).

    Article  CAS  Google Scholar 

  10. Streeter, J. C.R.C. crit. Rev. Pl. Sci. 7, 1–23 (1988).

    Article  CAS  Google Scholar 

  11. Spaink, H. et al. in Advances in Molecular Genetics of Plant -Microbe Interactions Vol 1 (eds Hennecke, H & Verma, D. P. S.) 142–149 (Kluwer Academic, Dordrecht, 1991).

    Book  Google Scholar 

  12. Downie, J. A. Molec. Microbiol. 3, 1649–1652 (1989).

    Article  CAS  Google Scholar 

  13. Truchet, G., Michel, M. & Dénarié, J. Differentiation 16, 163–173 (1980).

    Article  CAS  Google Scholar 

  14. Finan, T. M. et al. Cell 40, 869–877 (1985).

    Article  CAS  Google Scholar 

  15. Hirsch, A. M., Bhuvaneswari, T. V., Torrey, J. G. & Bisseling, T. Proc. natn. Acad. Sci. U.S.A. 86, 1244–1248 (1989).

    Article  ADS  CAS  Google Scholar 

  16. Hollingsworth, R., Squartini, A., Philip-Hollingsworth, S. & Dazzo, F. B. in Signal Molecules in Plants and Plant-Microbe Interactions (ed. Lugtenberg, B. J. J.) 387–393 (Springer, Berlin, 1989).

    Book  Google Scholar 

  17. Kapp, D., Niehaus, K., Quandt, J., Müller, P. & Pühler, A. Pl. Cell 2, 139–151 (1990).

    Article  Google Scholar 

  18. Egelhoff, T. T. & Long, S. R. J. Bact. 164, 591–599 (1985).

    CAS  PubMed  Google Scholar 

  19. Debellé, F. et al. J. Bact. 168, 1075–1086 (1986).

    Article  Google Scholar 

  20. Horvath, B. et al. Cell 46, 335–343 (1986).

    Article  CAS  Google Scholar 

  21. Albersheim, P. et al. in Structure and Function of Plant Genomes (eds Ciferri, O. & Dure, L. III) 293–312 (Plenum, New York, 1983).

    Book  Google Scholar 

  22. McDougall, G. J. & Fry, S. C. Pl. Physiol. 89, 883–887 (1989).

    Article  CAS  Google Scholar 

  23. Eberhard, S. et al. Pl. Cell 1, 747–755 (1989).

    Article  CAS  Google Scholar 

  24. Scheres, B. et al. Cell 60, 281–294 (1990).

    Article  CAS  Google Scholar 

  25. Nap, J. P. & Bisseling, T. Science 250, 948–954 (1990).

    Article  ADS  CAS  Google Scholar 

  26. Truchet, G., Camut, S., de Billy, F., Odorico, R. & Vasse, J. Protoplasma 149, 82–88 (1989).

    Article  Google Scholar 

  27. Maillet, F., Debellé, F. & Dénarié, J. Molec. Microbiol. 4, 1975–1984 (1990).

    Article  CAS  Google Scholar 

  28. Boivin, C., Camut, S., Malpica, C. A., Truchet, G. & Rosenberg, C. Pl. Cell 2, 1157–1170 (1990).

    Article  CAS  Google Scholar 

  29. Sprent, P. Applied Nonparametric Statistical Methods (Chapman and Hall, London, 1989).

    MATH  Google Scholar 

  30. Karlson, K. A., Samuelson, B. E. & Steen, G. O. J. Membrane Biol. 5, 169–184 (1971).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Truchet, G., Roche, P., Lerouge, P. et al. Sulphated lipo-oligosaccharide signals of Rhizobium meliloti elicit root nodule organogenesis in alfalfa. Nature 351, 670–673 (1991). https://doi.org/10.1038/351670a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/351670a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing