Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Relation between crystal symmetry and ionicity in silica polymorphs

Abstract

THE structure and stability of an inorganic solid is determined in general both by short-range covalent and by long-range electrostatic forces. Here we describe the use of interatomic force fields developed recently from first-principles quantum-chemical cluster calculations1,2 in the study of the structures of SiO2 tetrahedral networks. We find that the symmetry of these structures depends sensitively on the balance between ionic and covalent forces: high-symmetry structures are stabilized for relatively large ion partial charges, and low-symmetry structures are stabilized when the ionicity is small. For some SiO2 polymorphs, the low-symmetry structures found in our simulations correspond to the low-temperature phases of these polymorphs found experimentally. A reinterpretation of structural data on quartz provides evidence for temperature dependence of the ionicity, which can explain the change of symmetry observed when temperature is increased. Our preliminary calculations on aluminophosphates suggest that this symmetry-breaking mechanism may also provide insight into the structural changes observed for complex molecular sieves.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Van Beest, B. W. H., Kramer, G. J. & Van Santen, R. A. Phys. Rev. Lett. 64, 1955–1958 (1990).

    Article  ADS  CAS  Google Scholar 

  2. Kramer, G. J., Farragher, N. P., Van Beest, B. W. H. & Van Santen, R. A. Phys. Rev. B43, 5068–5080 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Dovesi, R., Pisani, C. Roetti, C. & Silvi, B. J. chem. Phys. 86, 6967–6971 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Allan, D. C. & Teter, M. P. Phys. Rev. Lett. 59, 1136–1139 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Catlow, R. C. A. & Price, G. D. Nature 347, 243–248 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Lasaga, A. C. & Gibbs, G. V. Phys. Chem. Miner. 14, 107–117 (1987).

    Article  ADS  CAS  Google Scholar 

  7. Tsuneyuki, S., Tsukada, M., Aoki, H. & Matsui, Y. Phys. Rev. Lett. 61, 869–872 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Tsuneyuki, S., Matsui, Y., Aoki, H. & Tsukada, M. Nature 339, 209–211 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Nye, J. F. Physical Properties of Crystals (Oxford University Press, Oxford, 1957).

    MATH  Google Scholar 

  10. Meier, W. M. & Olson, D. H. Atlas of Zeolite Structure Types, 2nd edn (Butterworth, Cambridge, 1987).

    Google Scholar 

  11. Axe, J. D. & Shirane, G. Phys. Rev. B1, 342–348 (1970).

    Article  ADS  CAS  Google Scholar 

  12. Peacor, D. R. Z. Kristallogr. 138, 274–298 (1973).

    Article  CAS  Google Scholar 

  13. Fyfe, C. A., Strobl, H., Kokotailo, G. T., Kennedy, G. J. & Barlow, G. E. J. Am. chem. Soc. 110, 3373–3380 (1988).

    Article  CAS  Google Scholar 

  14. Grimm, H. & Dorner, B. J. Phys. Chem. Solids 36, 407–413 (1975).

    Article  ADS  CAS  Google Scholar 

  15. Van Santen, R. A. & Vogel, D. L. Adv. Solid St. Chem. 1, 151–224 (1989).

    CAS  Google Scholar 

  16. Lasaga, A. C. & Gibbs, G. V. Phys. Chem. Miner. 16, 29–41 (1988).

    Article  ADS  CAS  Google Scholar 

  17. Tsuneyuki, S., Aoki, H., Tsukada, M. & Matsui, Y. Phys. Rev. Lett. 64, 776–779 (1990).

    Article  ADS  CAS  Google Scholar 

  18. Gouhara, K. & Kato, N. J. phys. Soc. Japan 54, 1868–1881; 1882–1889 (1985).

    Article  ADS  CAS  Google Scholar 

  19. Mukamel, D. & Walker, M. B. Phys. Rev. Lett. 58, 2559–2562 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Phillips, J. C. Bonds and Bands in Semiconductors (Academic, New York, 1973).

    Google Scholar 

  21. Dessau, R. M., Schlenker, J. L. & Higgins, J. B. Zeolites 10, 522–524 (1990).

    Article  CAS  Google Scholar 

  22. Rudolf, P. R. & Crowder, C. E. Zeolites 10, 163–168 (1990).

    Article  CAS  Google Scholar 

  23. McCusker, L. B., Baerlocher, C., Jahn, E. & Bülow, M. Zeolites (in the press).

  24. Davis, M. E., Saldarriaga, C., Montes, C., Garces, J. & Crowder, C. Zeolites 8, 362–366 (1988).

    Article  CAS  Google Scholar 

  25. Tezuka, Y., Shin, S. & Ishigame, M. Phys. Rev. Lett. 66, 2356 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kramer, G., van Beest, B. & van Santen, R. Relation between crystal symmetry and ionicity in silica polymorphs. Nature 351, 636–638 (1991). https://doi.org/10.1038/351636a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/351636a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing