Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystals of haemoglobin with the T quaternary structure bind oxygen noncooperatively with no Bohr effect

Abstract

THE relationship between the structure and function of haemoglobin has mainly been studied by comparing its X-ray crystal structures with its function in solutions1–11. To make a direct comparison we have studied the functional properties of haemoglobin in single crystals, an approach that has been an important part of the investigation of several enzyme mechanisms12,13. Here we report on the oxygen binding by single crystals of human haemoglobin grown in solutions of polyethylene glycol. Unlike haemoglobin crystals formed in concentrated salt solution, which crack and become disordered on oxygenation14–16, crystals grown in polyethylene glycol remain intact. X-ray studies have shown that the T (deoxy) quaternary structure of haemoglobin in this crystal at pH 7.0 is maintained at atmospheric oxygen pressure, and that the salt-bridges are not broken117–19. We find striking differences between oxygen binding by haemoglobin in this crystal and by haemoglobin in solution. Not only is oxygenation of the crystal noncooperative, but the oxygen affinity is independent of pH in the range 6.0–8.5, and is much lower than that of the T state in solution. The lack of cooperativity without a change in quaternary structure is predicted by the two-state allosteric model of Monod, Wyman and Changeux1,5. The absence of a Bohr effect without breakage of salt-bridges is predicted by Perutz's stereochemical mechanism2,4,9–11. In contrast to the X-ray result that oxygen binds only to the α haems, our measurements show that the α haems have only a slightly higher affinity than the β haems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Monod, J., Wyman, J. & Changeux, J. J. molec. Biol. 12, 88–118 (1965).

    Article  CAS  Google Scholar 

  2. Perutz, M. F. Nature 228, 726–739 (1970).

    Article  CAS  ADS  Google Scholar 

  3. Antonini, A. & Brunori, M. Hemoglobin and Myoglobin in their Reactions with Ligands (North-Holland, Amsterdam, 1971).

    Google Scholar 

  4. Szabo, A. & Karplus, M. J. molec. Biol. 72, 163–197 (1972).

    Article  CAS  Google Scholar 

  5. Shulman, R. G., Hopfield, J. J. & Ogawa, S. Q. Rev. Biophys. 8, 325–420 (1975).

    Article  CAS  Google Scholar 

  6. Edelstein, S. J. A. Rev. Biochem. 44, 209–232 (1975).

    Article  CAS  Google Scholar 

  7. Baldwin, J. M. Prog. Biophys. molec. Biol. 29, 227–320 (1975).

    Google Scholar 

  8. Ackers, G. & Smith, F. R. A. Rev. Biophys. Biochem. 16, 583–609 (1987).

    CAS  Google Scholar 

  9. Perutz, M. F., Fermi, G., Luisi, B., Shaanan, B. & Liddington, R. C. Accts Chem. Res. 20, 309–321 (1987).

    Article  CAS  Google Scholar 

  10. Perutz, M. F. in The Molecular Basis of Blood Diseases (eds Stamatoyannopoulos, G., Nienhuis, A. W., Leder, P. & Majerus, P. W.) 127–178 (Saunders, Philadelphia, 1987).

    Google Scholar 

  11. Perutz, M. F. Q. Rev. Biophys. 22, 139–236 (1989).

    Article  CAS  Google Scholar 

  12. Rossi, G. L. & Bernhard, S. A. J. molec. Biol. 49, 85–91 (1970).

    Article  CAS  Google Scholar 

  13. Mozzarelli, A., Peracchi, A., Rossi, G. L. Ahmed, S. A. & Miles, E. W. J. biol. Chem. 264, 15774–15780 (1989).

    CAS  PubMed  Google Scholar 

  14. Haurowitz, F. Z. physiol. Chem. 254, 266–274 (1938).

    Article  CAS  Google Scholar 

  15. Perutz, M. F. Acta Crystallogr. 6, 859–864 (1953).

    Article  CAS  Google Scholar 

  16. Perutz, M. F., Bolton, W., Diamond, R., Muirhead, H. & Watson, H. C. Nature 203, 687–690 (1964).

    Article  CAS  ADS  Google Scholar 

  17. Brzozowski, A. et al. Nature 307, 74–76 (1984).

    Article  CAS  ADS  Google Scholar 

  18. Liddington, R. C. thesis, Univ. York (1986).

  19. Liddington, R., Derewenda, Z., Dodson, G. & Harris, D. Nature 331, 725–728 (1988).

    Article  CAS  ADS  Google Scholar 

  20. Lee, A. W., Karplus, M., Poyart, C. & Bursaux, E. Biochemistry 27, 1285–1301 (1988).

    Article  CAS  Google Scholar 

  21. Mills, F. C., Johnson, M. L. & Ackers, G. K. Biochemistry 15, 5351–5362 (1976).

    Article  Google Scholar 

  22. Imai, K. Allosteric Effects in Haemoglobin. (Cambridge University Press, Cambridge, 1982).

    Google Scholar 

  23. Gill, S. J., Di Cera, E., Doyle, M. L., Bishop, G. A. & Robert, C. H. Biochemistry 26, 3995–4002 (1987).

    Article  CAS  Google Scholar 

  24. Imai, K. & Yonetani, T. J. biol. Chem. 250, 2227–2231 (1975).

    CAS  PubMed  Google Scholar 

  25. Chu, A. H., Turner, B. W. & Ackers, G. K. Biochemistry 23, 604–617 (1984).

    Article  CAS  Google Scholar 

  26. Kilmartin, J. V., Anderson, N. L. & Ogawa, S. J. molec. Biol. 123, 71–87 (1978).

    Article  CAS  Google Scholar 

  27. Lalezari, I. et al. Biochemistry 29, 1515–1523 (1990).

    Article  CAS  Google Scholar 

  28. Marden, M. C., Bohn, B., Kister, J. & Poyart, C. Biophys. J. 57, 397–403 (1990).

    Article  CAS  Google Scholar 

  29. Makinen, M. W. & Eaton, W. A. Nature 247, 62–64 (1974).

    Article  CAS  ADS  Google Scholar 

  30. Eaton, W. A. & Hofrichter, J. Meth. Enzym. 76, 175–261 (1981).

    Article  CAS  Google Scholar 

  31. Luisi, B., Liddington, R. C., Fermi, G. & Shibayama, N. J. molec. Biol. 214, 7–14 (1990).

    Article  CAS  Google Scholar 

  32. Brzozowski, A. et al. in Hemoglobin (eds Schnek, A. G. & Paul, J.) 37–51 (Editions de l'Université de Bruxelles, Belgium, 1984).

    Google Scholar 

  33. Shibayama, N., Morimoto, H. & Miyazaki, G. J. molec. Biol. 192, 323–329 (1986).

    Article  CAS  Google Scholar 

  34. Sawicki, C. A. & Gibson, Q. H., J. biol. Chem. 252, 7138–7147 (1977).

    Google Scholar 

  35. Gill, S. J. Meth. Enzym. 76, 427–438 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mozzarelli, A., Rivetti, C., Rossi, G. et al. Crystals of haemoglobin with the T quaternary structure bind oxygen noncooperatively with no Bohr effect. Nature 351, 416–419 (1991). https://doi.org/10.1038/351416a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/351416a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing