Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Highly vibrationally excited oxygen as a potential source of ozone in the upper stratosphere and mesosphere

Abstract

ONE of the main problems in atmospheric chemistry in recent years has been the discrepancy between theoretical model calculations of ozone concentrations and observations in the upper stratosphere and mesosphere1. It has been suggested2 that the photolysis of vibrationally excited oxygen could provide an extra source of ozone and new laboratory data now allow us to test this hypothesis in two ways. First, by including the proposed mechanism in a numerical model of the atmosphere, we find that the production of odd oxygen is enhanced and that the calculated ozone concentrations are significantly increased so that they agree well with observations. Second, we present a comparison between satellite observations of the daytime enhancement in the 6.9-μm emission from water vapour and theoretical calculations, which yields indirect evidence for the presence of vibrationally excited oxygen in the upper stratosphere and mesosphere; a significant fraction of which appears to be due to relaxation of very high vibrational levels. Both these tests demonstrate that the proposed mechanism may indeed account for most of the discrepancy between model results and observations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Atmos. Ozone Rep. No. 16 (World Meteorological Organisation, Geneva, 1986).

  2. Slanger, T. G., Jusinski, L. E., Black, G. & Gadd, G. E. Science 241, 945–950 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Schmaizl, U. & Crutzen, P. J. Proc. Quad. Ozone Symp. (eds Zerefos, C. S. & Ghazi, A.) (Reidel, Dordrecht, 1984).

    Google Scholar 

  4. Jackman, C. H., Stolarski, R. S. & Kaye, J. A. J. geophys. Res. 91, 1103–1116 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Froidevaux, L., Allen, M., Berman, S. & Daughton, A. J. geophys. Res. 94, 6389–6417 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Natarajan, M. & Callis, L. B. Geophys. Res. Lett. 16, 473–476 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Rusch, D. W. & Eckman, R. S. J. geophys. Res. 90, 12991–12998 (1985).

    Article  ADS  Google Scholar 

  8. Fairchild, C. E., Stone, E. J. & Lawrence, G. M. J. chem. Phys. 69, 3632–3638 (1978).

    Article  ADS  CAS  Google Scholar 

  9. Sparks, R. K., Carlson, L. R., Shohatake, M. L., Kowalczyk, M. L. & Lee, Y. T. J. chem. Phys. 72, 1401–1402 (1980).

    Article  ADS  CAS  Google Scholar 

  10. Kinugawa, T., Sato, T., Arikawa, T., Matsumi, Y. & Kawasaki, M. J. chem. Phys. 93, 3289–3294 (1990).

    Article  ADS  CAS  Google Scholar 

  11. Fabian, P., Pyle, J. A. & Wells, R. J. J. geophys. Res. 87, 4981–5000 (1982).

    Article  ADS  CAS  Google Scholar 

  12. Krupenie, P. H. J. Phys. Chem. Ref. Data 1 489–494 (1972).

    Article  Google Scholar 

  13. Rapp, D. J. chem. Phys. 43, 316–317 (1965).

    Article  ADS  CAS  Google Scholar 

  14. Deleon, R. L. & Rich, J. W. Chem. Phys. 107, 283–292 (1986).

    Article  CAS  Google Scholar 

  15. Russell, J. M. et al. J. geophys. Res. 89, 5115–5124 (1984).

    Article  ADS  CAS  Google Scholar 

  16. Kerridge, B. J. & Remsberg, E. E. J. geophys. Res. 94, 16323–16342 (1989).

    Article  ADS  Google Scholar 

  17. Levene, H. B., Nieh, J. C. & Valentini, J. J. J. chem. Phys. 87, 2583–2593 (1987).

    Article  ADS  CAS  Google Scholar 

  18. Thomas, R. G. & Thrush, B. A. Proc. R. Soc. Lond. A356, 307–314 (1977).

    Article  ADS  Google Scholar 

  19. Valentini, J. J., Gerrity, D. P., Phillips, D. L., Nieh, J. C. & Tabor, K. D. J. chem. Phys. 86, 6745–6756 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Lopez-Puertas, M., Rodrigo, R., Molina, A. & Taylor, F. W. J. atmos. terr. Phys. 48, 749–764 (1986).

    Article  ADS  CAS  Google Scholar 

  21. Solomon, S., Kiehl, J. T., Kerridge, B. J., Remsberg, E. E. & Russell, J. M. J. geophys. Res. 91, 9865–9876 (1986).

    Article  ADS  CAS  Google Scholar 

  22. Taylor, R. L. Can J. Chem. 52, 1436–1451 (1974).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toumi, R., Kerridge, B. & Pyle, J. Highly vibrationally excited oxygen as a potential source of ozone in the upper stratosphere and mesosphere. Nature 351, 217–219 (1991). https://doi.org/10.1038/351217a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/351217a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing