Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Aseismicity in the lower mantle by superplasticity of the descending slab

Abstract

IT has been suggested1–7 that deep earthquakes in subduct ion zones may be caused by mineralogical transformations in the subducting slab. These transformations, from olivine to modified spinel to spinel, are also thought to affect the rheology of the descending slab2–4. Experiments in the system Mg2SiO4–Fe2SiO4 (ref. 8) have shown that at still higher pressure, coinciding with the 670-km seismic discontinuity between the upper and lower mantle, spinel dissociates to a fine-grained mixture of perovskite plus magnesiowiistite. Here we argue that the dissociation product in the mantle will also be very fine-grained, and that its eutectoid texture, combined with the low temperature in the slab, will prevent grain growth. We note (as have others9,3) that fine-grained materials at moderately high temperatures and low strain rates exhibit super-plastic behaviour; the resulting viscous behaviour of the slab below the spinel dissociation boundary may therefore account for the observed absence of seismicity below 700 km depth, even if slabs do penetrate into the lower mantle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kirby, S. H. J. geophys. Res. 92, 13789–13800 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Green, H. W., Young, T. E., Walker, D. & Scholz, C. H. Nature 348, 720–722 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Rubie, D. C. Nature 308, 505–508 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Rubie, D. C. & Brearley, A. J. Nature 348, 628–631 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Frohlich, C. A. Rev. Earth planet. Sci. 17, 227–254 (1989).

    Article  ADS  Google Scholar 

  6. Sung, C-M. & Burns, R. G. Tectonophysics 31, 1–32 (1976).

    Article  ADS  CAS  Google Scholar 

  7. Liu, L-G. Phys. Earth planet. Inter. 32, 226–240 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Ito, E. & Takahashi, E. J. geophys. Res. 94, 10637–10646 (1989).

    Article  ADS  Google Scholar 

  9. O'Connell, R. J. Tectonophysics 38, 119–136 (1977).

    Article  ADS  Google Scholar 

  10. Fischer, K. M., Jordan, T. H. & Creager, K. C. J. geophys. Res. 93, 4773–4783 (1988).

    Article  ADS  Google Scholar 

  11. Kamiya, S., Miyatake, T. & Hirahara, K. Geophys. Res. Lett. 15, 828–831 (1988).

    Article  ADS  Google Scholar 

  12. Boullier, A. M. & Gueguen, Y. Contr. Miner. Petrol. 50, 93–104 (1975).

    Article  ADS  CAS  Google Scholar 

  13. Schmid, S. M., Boland, J. N. & Paterson, M. S. Tectonophysics 43, 257–291 (1977).

    Article  ADS  Google Scholar 

  14. Chen, I.-W. & Xue, L. A. J. Am. Ceram. Soc. 73, 2585–2609 (1990).

    Article  CAS  Google Scholar 

  15. Kim, W.-J., Wolfenstine, J. & Sherby, O. D. Acta metall. mater. 39, 199–208 (1991).

    Article  CAS  Google Scholar 

  16. Ito, E. & Takahashi, E. Nature 328, 514–517 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Heuer, A. H., Tighe, N. J. & Cannon, R. M. J. Am. Ceram. Soc. 63, 53–58 (1980).

    Article  CAS  Google Scholar 

  18. Gupta, T. K. & Coble, R. L. J. Am. Ceram. Soc. 51, 521–525 (1968).

    Article  CAS  Google Scholar 

  19. Nieh, T.-G. & Wadsworth, J. J. Am. Ceram. Soc. 72, 1469–1472 (1989).

    Article  CAS  Google Scholar 

  20. Schubert, G., Yuen, D. A. & Turcotte, D. L. Geophys. J. R. astr. Soc. 42, 705–735 (1975).

    Article  Google Scholar 

  21. Harkulich, T. M., Magder, J., Vukasovich, M. S. & Lockhart, R. J. J. Am. Ceram. Soc. 49, 295–299 (1966).

    Article  CAS  Google Scholar 

  22. Wakai, F. & Kato, H. Adv. Ceram. Mat. 3, 71–76 (1988).

    Article  Google Scholar 

  23. Richards, M. A. & Wicks, C. W., Jr. Geophys. J. 101, 1–35 (1990).

    Article  ADS  Google Scholar 

  24. Frohlich, C. & Grand, S. P. Nature 347, 333–334 (1990).

    Article  ADS  Google Scholar 

  25. Zhou, H-W. & Clayton, R. W. J. geophys. Res. 95, 6829–6851 (1990).

    Article  ADS  Google Scholar 

  26. Sato, H., Sacks, I. S., Takahashi, E. & Scarfe, C. M. Nature 336, 154–156 (1988).

    Article  ADS  Google Scholar 

  27. Ito, E. & Katsura, T. Geophys. Res. Lett. 16, 425–428 (1989).

    Article  ADS  CAS  Google Scholar 

  28. Iidaka, T. & Suetsugu, D. Eos 71, 1574–1575 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ito, E., Sato, H. Aseismicity in the lower mantle by superplasticity of the descending slab. Nature 351, 140–141 (1991). https://doi.org/10.1038/351140a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/351140a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing