Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Non-Fermi-liquid nature of the normal state of itinerant-electron ferromagnets

Abstract

A century of research on magnetic phenomena had led to the view that the normal state of itinerant-electron ferromagnets such as Fe, Ni and Co could be described in terms of the standard model of the metallic state or its extension known as the nearly ferromagnetic Fermi liquid theory1,2,3. In recent years, however, a large body of observations has accumulated from various complex intermetallic systems4,5 that raises the possibility that this assumption might be wrong. Here we examine this issue by means of high-precision measurements of the electrical transport and magnetic properties of pure ferromagnets—in particular, MnSi—in which the Curie temperature is tuned towards absolute zero by the application of hydrostatic pressure. With this method, it is possible for us to study the normal state over an extraordinarily large range of temperature of up to five orders of magnitude above the Curie temperature. Our results using MnSi reveal a particularly striking combination of properties—most notably a T3/2 power law for the resistivity—showing clearly that the normal state of this itinerant-electron ferromagnet cannot be described in terms of the standard model of metals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagram of the ferromagnetic state of MnSi and its crystallographic structure16,17.
Figure 2: Temperature dependence of the resistivity ρ(T) of MnSi above the critical pressure in different T regimes.
Figure 3: Comparison of the experimentally observed temperature dependence of the resistivity above pc = 14.6 kbar with predictions of the model of a nearly ferromagnetic Fermi liquid (NFFL)5,11,16,21,24,25 as evaluated for MnSi.
Figure 4: Regime of T3/2 resistivity in the TB plane just above pc = 14.6 kbar.

Similar content being viewed by others

References

  1. Stoner, E. C. Collective electron ferromagnetism. Proc. R. Soc. Lond. A 165, 372–414 (1938).

    Article  ADS  Google Scholar 

  2. Radu, G. T. & Suhl, H. (eds) Magnetism—A Treatise on Modern Theory and Materials (Academic, New York, 1966).

    Google Scholar 

  3. Lonzarich, G. G. in Electrons at the Fermi Surface (ed. Springford, M.) 225–528 (Cambridge Univ. Press, Cambridge, 1980).

    Google Scholar 

  4. Institute of Physics Conference on Non-Fermi Liquid Behaviour in Metals. J. Phys. Cond Matter. (Spec. Issue) 8, 9675–10148 (1996).

  5. Varma, C. M., Nussinov, Z. & van Saarloos, W. Singular Fermi liquids. Phys. Rep. (in the press); also preprint cond-mat 0103393 at 〈http://xxx.lanl.gov〉.

  6. Williams, H. J., Wernick, J. H., Sherwood, R. C. & Wertheim, G. K. Magnetic properties of monosilicides of some 3-d transition elements. J. Appl. Phys. 37, 1256 (1966).

    Article  ADS  Google Scholar 

  7. Plumer, M. L. & Walker, M. B. Wavevector and spin reorientation in MnSi. J. Phys. C: Solid State Phys. 14, 4689–4699 (1981).

    Article  ADS  CAS  Google Scholar 

  8. Ishikawa, Y. & Arai, M. Magnetic phase diagram of MnSi near critical temperature studied by neutron small angle scattering. J. Phys. Soc. Jpn 53, 2726–2733 (1984).

    Article  ADS  CAS  Google Scholar 

  9. Ishida, M. et al. Crystal chirality and helicity of the helical spin density wave in MnSi: II. polarized neutron diffraction. J. Phys. Soc. Jpn 54, 2975–2982 (1985).

    Article  ADS  CAS  Google Scholar 

  10. Lebech, B. in Recent Advances in Magnetism of Transition Metal Compounds 167–178 (World Scientific, Singapore, 1993).

    Book  Google Scholar 

  11. Lonzarich, G. G. in Electron (ed. Springford, M.) 109–147 (Cambridge Univ. Press, Cambridge, 1997).

    Google Scholar 

  12. Pfleiderer, C. et al. Coexistence of superconductivity and ferromagnetism in the d-band metal ZrZn2. Nature 412, 58–61 (2001); Erratum Nature 412, 660 (2001).

    Article  ADS  CAS  Google Scholar 

  13. Fawcett, E., Maita, J. P. & Wernick, J. H. Magnetoelastic and thermal properties of MnSi. Int. J. Magn. 1, 29–34 (1970).

    CAS  Google Scholar 

  14. Bloch, D., Voiron, J., Jaccarino, V. & Wernick, J. H. The high field–high pressure magnetic properties of MnSi. Phys. Lett. A 51, 259–291 (1975).

    Article  ADS  Google Scholar 

  15. Thompson, J. D., Fisk, Z. & Lonzarich, G. G. Perspective on heavy-electron and Kondo-lattice systems from high pressure studies. Physica B 161, 317–323 (1989).

    Article  ADS  CAS  Google Scholar 

  16. Pfleiderer, C., McMullan, G. J., Julian, S. R. & Lonzarich, G. G. Magnetic quantum phase transition in MnSi under hydrostatic pressure. Phys. Rev. B 55, 8330–8338 (1997).

    Article  ADS  CAS  Google Scholar 

  17. Thessieu, C. et al. Field dependence of the magnetic quantum phase transition in MnSi. J. Phys. Condens. Matter 9, 6677–6687 (1997).

    Article  ADS  CAS  Google Scholar 

  18. Ishikawa, Y. et al. Paramagnetic spin fluctuations in the weak itinerant-electron ferromagnet MnSi. Phys. Rev. B 31, 5884–5893 (1985).

    Article  ADS  CAS  Google Scholar 

  19. Yasuoka, H., Jaccarino, V., Sherwood, R. C. & Wernick, J. H. NMR and susceptibility studies of MnSi above Tc. J. Phys. Soc. Jpn 44, 842–849 (1978).

    Article  ADS  CAS  Google Scholar 

  20. Taillefer, L., Lonzarich, G. G. & Strange, P. The band magnetism of MnSi. J. Magn. Magn. Mater. 54–57, 957–958 (1986).

    Article  ADS  Google Scholar 

  21. Millis, A. J. Effect of a nonzero temperature on quantum critical points in itinerant fermion systems. Phys. Rev. B 48, 7183–7196 (1993).

    Article  ADS  CAS  Google Scholar 

  22. Goto, T., Shindo, Y., Takahashi, H. & Ogawa, S. Magnetic properties of the itinerant metamagnetic system Co(S1-xSex)2 under high magnetic field and high pressure. Phys. Rev. B 56(21), 14019–14028 (1997).

    Article  ADS  CAS  Google Scholar 

  23. Huxley, A., Sheikin, I. & Braithwaite, D. Metamagnetic behavior near the quantum critical point in UGe2. Physica B 284–288, 1277–1278 (2000).

    Article  ADS  Google Scholar 

  24. Moriya, T. Spin Fluctuations in Itinerant Electron Magnetism (Springer, Berlin, 1985).

    Book  Google Scholar 

  25. Lonzarich, G. G. & Taillefer, L. Effect of spin fluctuations on the magnetic equation of state of ferromagnetic or nearly ferromagnetic metals. J. Phys. C 18, 4339–4371 (1985).

    Article  ADS  CAS  Google Scholar 

  26. Varma, C. M. et al. Phenomenology of the normal state of Cu–O high-temperature superconductors. Phys. Rev. Lett. 63, 1996–1999 (1989).

    Article  ADS  CAS  Google Scholar 

  27. Ford, P. & Mydosh, J. A. Electrical resistivity of noble-metal-host-3d solute spin glass alloys. Phys. Rev. B 14, 2057–2070 (1976).

    Article  ADS  CAS  Google Scholar 

  28. Rivier, N. & Mensah, A. E. Low temperature resistivity and collective excitations. Physica B 91, 85–88 (1977).

    Article  Google Scholar 

  29. Fischer, K. H. On the electrical resistivity of spin glasses. Z. Phys. B 34, 45–53 (1979).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank N. R. Bernhoeft, S. Brown, P. Coleman, N. Doiron-Layraud, J. Flouquet, F. M. Grosche, S. M. Hayden, D. Khmelnitskii, H. v. Löhneysen, G. J. McMullen, A. J. Millis, A. Rosch, S. Sachdev, L. Taileffer, A. Tsvelik, T. Vojta and I. R. Walker. Financial support by the Deutsche Forschungsgemeinschaft (Germany), the Engineering and Physical Sciences Research Council (UK) and the European Science Foundation under FERLIN are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Pfleiderer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfleiderer, C., Julian, S. & Lonzarich, G. Non-Fermi-liquid nature of the normal state of itinerant-electron ferromagnets. Nature 414, 427–430 (2001). https://doi.org/10.1038/35106527

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35106527

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing