Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Photoelectrochemical cells

Abstract

Until now, photovoltaics — the conversion of sunlight to electrical power — has been dominated by solid-state junction devices, often made of silicon. But this dominance is now being challenged by the emergence of a new generation of photovoltaic cells, based, for example, on nanocrystalline materials and conducting polymer films. These offer the prospect of cheap fabrication together with other attractive features, such as flexibility. The phenomenal recent progress in fabricating and characterizing nanocrystalline materials has opened up whole new vistas of opportunity. Contrary to expectation, some of the new devices have strikingly high conversion efficiencies, which compete with those of conventional devices. Here I look into the historical background, and present status and development prospects for this new generation of photoelectrochemical cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle of operation of photoelectrochemical cells based on n-type semiconductors.
Figure 2: Band positions of several semiconductors in contact with aqueous electrolyte at pH 1.
Figure 3: Schematic of operation of the dye-sensitized electrochemical photovoltaic cell.
Figure 4: Scanning electron micrograph of the surface of a mesoporous anatase film prepared from a hydrothermally processed TiO2 colloid.
Figure 5: The nanocrystalline effect in dye-sensitized solar cells.
Figure 6

Similar content being viewed by others

References

  1. Bequerel, E. Recherches sur les effets de la radiation chimique de la lumière solaire, au moyen des courants électriques. C.R. Acad. Sci. 9, 145–149 (1839).

    Google Scholar 

  2. Gurney, R. W. & Mott, N. F. Theory of the photolysis of silver bromide and the photographic latent image. Proc. R. Soc. Lond. A 164, 151–167 (1938).

    Article  ADS  CAS  Google Scholar 

  3. West, W. First hundred years of spectral sensitization. Proc. Vogel Cent. Symp. Photogr. Sci. Eng. 18, 35–48 (1974).

    CAS  Google Scholar 

  4. Moser, J. Notiz über die Verstärkung photoelectrischer Ströme durch optische Sensibilisierung. Monatsh. Chem. 8, 373 (1887).

    Article  Google Scholar 

  5. Spitler, M. T. Dye photo-oxidation at semiconductor electrodes—a corollary to spectral sensitization in photography. J. Chem. Educ. 60, 330–332 (1983).

    Article  CAS  Google Scholar 

  6. Namba, S. & Hishiki, Y. Color sensitization of zinc oxide with cyanide dyes. J. Phys. Chem. 69, 774–779 (1965).

    Article  CAS  Google Scholar 

  7. Nelson, R. C. Minority carrier trapping and dye sensitization. J. Phys. Chem. 69, 714–718 (1965).

    Article  CAS  Google Scholar 

  8. Boudon, J. Spectral sensitization of chemical effects in solids. J. Phys. Chem. 69, 705–713 (1965).

    Article  Google Scholar 

  9. Gerischer, H. & Tributsch, H. Electrochemische Untersuchungen zur spectraleu sensibilisierung von ZnO-Einkristallen. Ber. Bunsenges. Phys. Chem. 72, 437–445 (1968).

    Article  CAS  Google Scholar 

  10. Hauffe, K., Danzmann, H. J., Pusch, H., Range, J. & Volz, H. New Experiments on the sensitization of zinc oxide by means of the electrochemical cell technique. J. Electrochem. Soc. 117, 993–999 (1970).

    Article  Google Scholar 

  11. Brattain, W. H. & Garrett, C. G. B. Experiments on the interface between germanium and an electrolyte. Bell Syst. Tech. J. 34, 129–176 (1955).

    Article  Google Scholar 

  12. Gerischer, H. Electrochemical behavior of semiconductors under illumination. J. Electrochem. Soc. 113, 1174–1182 (1966).

    Article  CAS  Google Scholar 

  13. Kalyanasundaram; K. Photoelectrochemcial cell studies with semiconductor electrodes: a classified bibliography (1975–1983). Solar Cells 15, 93–156 (1985).

    Article  CAS  Google Scholar 

  14. Licht, S. Multiple band gap semiconductor/electrolyte solar energy conversion. J. Phys. Chem. 105, 6281–6294 (2001).

    Article  CAS  Google Scholar 

  15. Fujishima. A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).

    Article  ADS  CAS  Google Scholar 

  16. O'Regan, B. & Grätzel, M. A low-cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Hagfeldt, A. & Grätzel, M. Molecular photovoltaics. Acc. Chem. Res. 33, 269–277 (2000).

    Article  CAS  Google Scholar 

  18. Hilgendorff, M., Spanhel, L., Rothenhäsuler, Ch. & Müller, G. From ZnO colloids to nanocrystalline highly conductive films. J. Electrochem. Soc. 145, 3632–3637 (1998).

    Article  CAS  Google Scholar 

  19. Nelson, J. Continuous time random walk model of electron transport in nanocrystalline TiO2 electrodes. Phys. Rev. B 59, 15374–15380 (1999).

    Article  ADS  CAS  Google Scholar 

  20. Barbé, Ch. J. et al. Nanocrystalline titanium oxide electrodes for photovoltaic applications. J Am. Ceram. Soc. 80, 3157–3171 (1997).

    Article  Google Scholar 

  21. Hodes, G., Howell, I. D. J. & Peter, L. M. Nanocrystalline photoelectrochemical cells: a new concept in photovoltaic cells. J. Electrochem. Soc. 139, 3136–3140 (1992).

    Article  ADS  CAS  Google Scholar 

  22. Schwarzburg, K. & Willig, F. Origin of photovoltage in dye sensitized elelectrochemical solar cells. J. Phys. Chem. B 103, 5743–5746 (1999).

    Article  CAS  Google Scholar 

  23. Pichot, F. & Gregg, B. A. The photovoltage-determining mechanism in dye-sensitized solar cells. J. Phys. Chem. B 104, 6–10 (1999).

    Article  Google Scholar 

  24. Cahen, D., Hodes, G., Grätzel, M. Guillemoles, J. F. & Riess, I. Nature of photovoltaic action in dye-sensitized solar cells. J. Phys. Chem. B 104, 2053–2059 (2000).

    Article  CAS  Google Scholar 

  25. Van de Lagemaat, J., Park, N.-G. & Frank, A. J. Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystalline TiO2 solar cells: a study by electrical impedance and optical modulation techniques. J. Phys. Chem. B 104, 2044–2052 (2000).

    Article  CAS  Google Scholar 

  26. Dloczik, L. et al. Dynamic response of dye-sensitized nanocrystalline solar cells: characterization by intensity-modulated photocurrent spectroscopy. J. Phys. Chem. B 101, 10281–10289 (1997).

    Article  CAS  Google Scholar 

  27. Masatai, Y. & Hodes, G. Size quantization in electrodeposited CdTe nanocrystalline films. J. Phys. Chem. B 101, 2685–2690 (1997).

    Article  Google Scholar 

  28. Nazeruddin, M. K. et al. Conversion of light to electricity by cis X2-Bis(2,2′-bipyridyl-4,4′-dicarboxalate) ruthernium(II) charge transfer sensitizers. J. Am. Chem. Soc. 115, 6382–6390 (1993).

    Article  Google Scholar 

  29. Kavan, L., Grätzel, M., Gilbert, S. E., Klemenz, C. & Scheel, H. J. Electrochemical and photoelectrochemical investigations of single-crystal anatase. J. Am. Chem. Soc. 118, 6716–6723 (1996).

    Article  CAS  Google Scholar 

  30. Nazeeruddin, M. K. et al. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J. Am. Chem. Soc. 123, 1613–1624 (2001).

    Article  CAS  Google Scholar 

  31. Hinsch, A. et al. in Proc. 16th Eur. PV Solar Energy Conf., Glasgow, May 2000 (eds Scheel, H. et al.) 32 (James & James, London, 2000).

    Google Scholar 

  32. Khaselev, O. & Turner, J. A. A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, 425–427 (1998).

    Article  ADS  CAS  Google Scholar 

  33. Grätzel, M. The artificial leaf, bio-mimetic photocatalysis. Cattech 3, 3–17 (1999).

    Google Scholar 

  34. Santato, C., Ulmann, M. & Augustynski, J. Photoelectrochemical properties of nanostructured tungsten trioxide films. J. Phys. Chem. B 105, 936–940 (2001).

    Article  CAS  Google Scholar 

  35. Khan, S. U. M. & Akikusa, J. Photoelectrochemical splitting of water at nanocrystalline n-Fe2O3 thin-film electrodes. J. Phys. Chem. B 103, 7184–7189 (1999).

    Article  CAS  Google Scholar 

  36. Tennakone, K., Kumara, G. R. R. A., Kumarasinghe, A. R., Wijayantha, K. G. U. & Sirimanne, P. M. A dye-sensitized nano-porous solid-state photovoltaic cell. Semicond. Sci. Technol. 10, 1689–1693 (1995).

    Article  ADS  Google Scholar 

  37. O'Regan, B. & Schwarz, D. T. Large enhancement in photocurrent efficiency caused by UV illumination of dye sensitized heterojunctions. Chem. Mater. 10, 1501–1509 (1998).

    Article  CAS  Google Scholar 

  38. Bach, U. et al. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395, 583–585 (1998).

    Article  ADS  CAS  Google Scholar 

  39. Krüger, J., Bach, U. & Grätzel, M. High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination. Appl. Phys. Lett. 79, 2085–2087 (2001).

    Article  ADS  Google Scholar 

  40. Kaiser, I. et al. The eta-solar cell with CuInS2: a photovoltaic cell concept using an extremely thin absorber. Sol. Energy Mater. Sol. Cells 67, 89–96 (2001).

    Article  ADS  CAS  Google Scholar 

  41. Halls, J. J. M., Pickler, K., Friend, R. H., Morati, S. C. & Holmes, A. B. Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498–500 (1995).

    Article  ADS  CAS  Google Scholar 

  42. Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor acceptor heterojunctions. Science 270, 1789–1791 (1995).

    Article  ADS  CAS  Google Scholar 

  43. Schön, J. H., Kloc, Ch., Bucher, E. & Batlogg, B. Efficient organic photovoltaic diodes based on doped pentacene. Nature 403, 408–410 (2000).

    Article  ADS  Google Scholar 

  44. Brabec, C. J. & Sariciftci, N. S. Polymeric photovoltaic devices. Mater. Today 3–8 (2000).

  45. Wöhrle,.D. & Meissner D. Organic solar cells. Adv. Mat. 3, 129–138 (1991).

    Article  Google Scholar 

  46. Shaheen, S. E. et al. 2.5% efficient orga-nic plastic solar cells. Appl. Phys. Lett. 78, 841–843 (2001).

    Article  ADS  CAS  Google Scholar 

  47. Tuladhar, D. et al. Abstract, Int. Workshop Nanoctruct. Photovoltaics, Dresden, Germany 〈http://www.mpipks-dresden.mpg.de〉 (2001).

  48. Grätzel, M. Perspectives for dye-sensitized nanocrystalline solar cells. Prog. Photovoltaic Res. Applic. 8, 171–185 (2000).

    Article  Google Scholar 

  49. Savenije, T. J., Warman, J. M. & Goosens, A. Visible light sensitization of titanium dioxide using a phenylene vinylene polymer. Chem. Phys. Lett. 278, 148–153 (1998).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I thank the members of the Swiss Federal Institute of Technology (EPFL) electrochemical photovoltaics development team, some of whose work is referenced; the industrial organizations whose interest in this PV system has induced them to license the concept and thereby support the research; EPFL; and OFEN (Swiss Federal Office of Energy) for past encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Grätzel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grätzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001). https://doi.org/10.1038/35104607

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35104607

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing