Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The influence of environment and experience on neural grafts

Key Points

  • The transplantation of neural cells shows promise as a therapy for a number of neurological conditions. However, the survival, integration and function of these grafts must be optimized before they can reach their full potential. This review discusses the limited evidence relating to the effects of environment and experience on transplanted neurons.

  • Environmental enrichment can have profound effects on the central nervous system, producing both anatomical and functional changes. It can also increase fibre outgrowth from cholinergic grafts in rats, and can improve the ability of grafted rats to solve a maze task. Environmental enrichment can also improve behavioural performance on some tasks following cortical grafting, but this improvement might result from neuroprotective effects. The survival of nigral grafts is also improved by environmental enrichment.

  • Experience can also have strong influences on behavioural performance after grafting. In animals with dopaminergic nigral grafts, pharmacological treatment with amphetamine can induce place conditioning, which determines the direction and rate of subsequent motor rotation.

  • Specific training is sometimes needed to allow a graft to improve behavioural function. Rats with retinotectal grafts can be trained to 'see' a light stimulus using the graft. In the striatal lesion model of Huntington's disease, rats with striatal grafts can recover function on a choice reaction time task only after specific training on the side that is tested.

  • Further work is required to establish the mechanisms that underlie these effects. It will also be important to take account of the effects of experience when planning postoperative care for patients that have received neural transplants. Much more research is needed to fully explore this important area.

Abstract

Environmental enrichment, behavioural experience and cell transplantation can each influence neuronal plasticity and recovery of function after brain damage, and each has been extensively investigated in its own right. However, the degree to which housing conditions or behavioural training can modify the survival, integration or function of transplanted tissues is less well established. Here we review the limited literature available, and suggest that this factor should be considered and integrated into the postoperative care that follows the clinical application of neural transplantation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Environmental enrichment can enhance functional recovery associated with cortical grafts in ischaemic rats.
Figure 2: 'Learning to use the transplant' in the retinotectal system.
Figure 3: Retraining in a choice reaction time task by rats with striatal lesions and grafts.

Similar content being viewed by others

References

  1. Dunnett, S. B., Björklund, A. & Lindvall, O. Cell therapy in Parkinson's disease — stop or go? Nature Rev. Neurosci. 2, 365–369 (2001).This review was published shortly after the first double-blind placebo-controlled trial using grafts of embryonic tissue to treat patients with Parkinson's disease. It outlines the key issues that face the clinical application of neural transplantation.

    Article  CAS  Google Scholar 

  2. Lindvall, O. & Hagell, P. Clinical observations after neural transplantation in Parkinson's disease. Prog. Brain Res. 127, 299–320 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Bachoud-Lévy, A. C. et al. Motor and cognitive improvements in patients with Huntington's disease after neural transplantation. Lancet 356, 1975–1979 (2000).

    Article  Google Scholar 

  4. Falci, S. et al. Obliteration of a posttraumatic spinal cord cyst with solid human embryonic spinal cord grafts: first clinical attempt. J. Neurotrauma 14, 875–884 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Kondziolka, D. et al. Transplantation of cultured human neuronal cells for patients with stroke. Neurology 55, 565–569 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Franklin, R. J. M. & ffrench-Constant, C. in Molecular Biology of Multiple Sclerosis (ed. Russell, W. C.) 231–242 (Wiley, London, 1996).

    Google Scholar 

  7. Wenning, G. K. et al. Towards neurotransplantation in multiple system atrophy: clinical rationale, pathophysiological basis, and preliminary experimental evidence. Cell Transplant. 9, 279–288 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Fawcett, J. W., Rosser, A. E. & Dunnett, S. B. Brain Damage, Brain Repair (Oxford Univ. Press, Oxford, 2001).

    Google Scholar 

  9. Brundin, P. et al. Improving the survival of grafted dopaminergic neurons: a review over current approaches. Cell Transplant. 9, 179–195 (2000).Only about 3–20% of grafted dopaminergic cells survive beyond the first week after transplantation. The authors examine the mechanisms that might trigger cell death, and how the survival of dopaminergic neurons could be improved.

    Article  CAS  PubMed  Google Scholar 

  10. Lundberg, C., Martinez-Serrano, A., Cattaneo, E., McKay, R. D. G. & Björklund, A. Survival, integration, and differentiation of neural stem cell lines after transplantation to the adult rat striatum. Exp. Neurol. 145, 342–360 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Studer, L., Tabar, V. & McKay, R. D. G. Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nature Neurosci. 1, 290–295 (1998).The grafting of human embryonic tissue into patients with Parkinson's disease is both ethically and logistically challenging. In this article the authors discuss the possibility of using in vitro expanded central nervous system precursor cells as a dopamine cell replacement therapy.

    Article  CAS  PubMed  Google Scholar 

  12. Brecknell, J. E. & Fawcett, J. W. Axonal regeneration. Biol. Rev. 71, 227–255 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Dunnett, S. B. & Björklund, A. in Functional Neural Transplantation (eds Dunnett, S. B. & Björklund, A.) 531–567 (Raven, New York, 1994).

    Google Scholar 

  14. Bregman, B. S. in Functional Neural Transplantation (eds Dunnett, S. B. & Björklund, A.) 489–529 (Raven, New York, 1994).

    Google Scholar 

  15. Dunnett, S. B. Functional repair of striatal systems by neural transplants: evidence for circuit reconstruction. Behav. Brain Res. 66, 133–142 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Turbes, C. C. Repair, reconstruction, regeneration and rehabilitation strategies to spinal cord injury. Biomed. Sci. Instrum. 34, 351–356 (1997).

    CAS  PubMed  Google Scholar 

  17. Robertson, I. H. & Murre, J. M. J. Rehabilitation of brain damage: brain plasticity and principles of guided recovery. Psychol. Bull. 125, 544–575 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Wilson, B. A. Recovery of cognitive functions following nonprogressive brain injury. Curr. Opin. Neurobiol. 8, 281–287 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Hebb, D. O. The Organization of Behavior (Wiley, New York, 1949).

    Google Scholar 

  20. Beggs, J. M. et al. in Fundamentals of Neuroscience (eds Zigmond, M. J., Bloom, F. E., Landis, S. C., Roberts, J. L. & Squire, L. S.) 1411–1454 (Academic, San Diego, 1999).

    Google Scholar 

  21. Bliss, T. V. P. & Lømo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. (Lond.) 232, 331–356 (1973).

    Article  CAS  Google Scholar 

  22. Bliss, T. V. P. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Sharp, P. E., McNaughton, B. L. & Barnes, C. A. Enhancement of hippocampal field potentials in rats exposed to a novel environment. Brain Res. 339, 361–365 (1985).

    Article  CAS  PubMed  Google Scholar 

  24. Berger, T. W., Rinaldi, P. C., Weisz, D. J. & Thompson, R. F. Single-unit analysis of different hippocampal cell types during classical conditioning of rabbit nictitating membrane response. J. Neurophysiol. 50, 1197–1219 (1983).

    Article  CAS  PubMed  Google Scholar 

  25. Cruikshank, S. J. & Weinberger, N. M. Evidence for the Hebbian hypothesis in experience-dependent physiological plasticity of neocortex: a critical review. Brain Res. Rev. 22, 191–228 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Jeffery, K. J. LTP and spatial learning — where to next? Hippocampus 7, 95–110 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Rosenzweig, M. R. Aspects of the search for neural mechanisms of memory. Annu. Rev. Psychol. 47, 1–32 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Kempermann, G., Kuhn, H. G. & Gage, F. H. More hippocampal neurons in adult mice living in an enriched environment. Nature 386, 493–495 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Renner, M. J. & Rosenzweig, M. R. Enriched and Impoverished Environments (Springer, New York, 1987).

    Book  Google Scholar 

  30. Tees, R. C. The influences of rearing environment and neonatal choline dietary supplementation on spatial learning and memory in adult rats. Behav. Brain Res. 105, 173–188 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Fernandez-Teruel, A., Escorihuela, R. M., Castellano, B., Gonzalez, B. & Tobena, A. Neonatal handling and environmental enrichment effects on emotionality, novelty/reward seeking, and age-related cognitive and hippocampal impairments: focus on the Roman rat lines. Behav. Genet. 27, 513–526 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Xerri, C., Coq, J. O., Merzenich, M. M. & Jenkins, W. M. Experience-induced plasticity of cutaneous maps in the primary somatosensory cortex of adult monkeys and rats. J. Physiol. (Paris) 90, 277–287 (1996).

    Article  CAS  Google Scholar 

  33. Van Praag, H., Kempermann, G. & Gage, F. H. Neural consequences of environmental enrichment. Nature Rev. Neurosci. 1, 191–198 (2000).This review discusses the effects of environmental enrichment on intact and diseased brain.

    Article  CAS  Google Scholar 

  34. Young, D., Lawlor, P. A., Leone, P., Dragunow, M. & During, M. J. Environmental enrichment inhibits spontaneous apoptosis, prevents seizures and is neuroprotective. Nature Med. 5, 448–453 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Will, B. E., Rosenzweig, M. R., Bennett, E. L., Hebert, M. & Morimoto, H. Relatively brief environmental enrichment aids recovery of learning capacity and alters brain measures after postweaning brain lesions in rats. J. Comp. Physiol. Psychol. 91, 33–50 (1977).An influential early paper providing evidence for beneficial effects of enriched environment on learning after cortical lesions.

    Article  CAS  PubMed  Google Scholar 

  36. Ohlsson, A. L. & Johansson, B. B. Environment influences functional outcome of cerebral infarction in rats. Stroke 26, 644–649 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Rose, F. D., Al-Khamees, K., Davey, M. J. & Attree, E. A. Environmental enrichment following brain damage: an aid to recovery of compensation? Behav. Brain Res. 56, 93–100 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Dunnett, S. B., Low, W. C., Iversen, S. D., Stenevi, U. & Björklund, A. Septal transplants restore maze learning in rats with fornix-fimbria lesions. Brain Res. 251, 335–348 (1982).

    Article  CAS  PubMed  Google Scholar 

  39. Dunnett, S. B. Cholinergic grafts, memory and ageing. Trends Neurosci. 14, 371–376 (1991).

    Article  CAS  PubMed  Google Scholar 

  40. Dunnett, S. B., Whishaw, I. Q., Bunch, S. T. & Fine, A. Acetylcholine-rich neuronal grafts in the forebrain of rats: effects of environmental enrichment, neonatal noradrenaline depletion, host transplantation site and regional source of embryonic donor cells on graft size and acetylcholinesterase-positive fiber outgrowth. Brain Res. 378, 357–373 (1986).The paper indicates that even if the different housing conditions provoke similar fibre outgrowth over the long term, the enriched environment is more conducive to the plastic events that accompany graft growth after transplantation.

    Article  CAS  PubMed  Google Scholar 

  41. Kelche, C., Dalrymple-Alford, J. C. & Will, B. Housing conditions modulate the effects of intracerebral grafts in rats with brain lesions. Behav. Brain Res. 28, 287–295 (1988).This is the first long-term experiment to show that the postoperative environment can affect the recovery of behavioural function in grafted animals.

    Article  CAS  PubMed  Google Scholar 

  42. Kelche, C., Roeser, C., Jeltsch, H., Cassel, J. C. & Will, B. The effects of intrahippocampal grafts, training, and postoperative housing on behavioral recovery after septohippocampal damage in the rat. Neurobiol. Learn. Mem. 63, 155–166 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Van Praag, H., Kempermann, G. & Gage, F. H. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature Neurosci. 2, 266–270 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Johansson, B. B. Brain plasticity and stroke rehabilitation. The Willis lecture. Stroke 31, 223–230 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Grabowski, M., Brundin, P. & Johansson, B. B. Fetal neocortical grafts implanted in adult hypertensive rats with cortical infarcts following a middle cerebral artery occlusion: ingrowth of afferent fibres from the host brain. Exp. Neurol. 116, 105–121 (1992).

    Article  CAS  PubMed  Google Scholar 

  46. Grabowski, M., Brundin, P. & Johansson, B. B. Functional integration of cortical grafts placed in brain infarcts of rats. Ann. Neurol. 34, 362–368 (1993).

    Article  CAS  PubMed  Google Scholar 

  47. Sorensen, J. C., Castro, A. J., Klausen, B. & Zimmer, J. Projections from fetal neocortical transplants placed in the frontal neocortex of newborn rats. A Phaseolus vulgaris-leucoagglutinin tracing study. Exp. Brain Res. 92, 299–309 (1992).

    Article  CAS  PubMed  Google Scholar 

  48. Grabowski, M., Johansson, B. B. & Brundin, P. Neocortical grafts placed in the infarcted brain of adult rats: few or no efferent fibers grow from transplant to host. Exp. Neurol. 134, 273–276 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Schulz, M. K., Hogan, T. P. & Castro, A. J. Connectivity of fetal neocortical block transplants in the excitotoxically ablated cortex of adult rats. Exp. Brain Res. 96, 480–486 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Schulz, M. K. et al. Fetal neocortical transplants grafted into neocortical lesion cavities made in newborn rats — an analysis of transplant integration with the host brain. Cell Transplant. 4, 123–132 (1995).

    Article  CAS  PubMed  Google Scholar 

  51. Mattsson, B., Sorensen, J. C., Zimmer, J. & Johansson, B. B. Neural grafting to experimental neocortical infarcts improves behavioral outcome and reduces thalamic atrophy in rats housed in enriched but not in standard environments. Stroke 28, 1225–1231 (1997).Improvements on simple tests of motor asymmetry were seen in grafted animals that were given the added benefit of housing in an enriched environment. Histology indicated that the benefits provided by a combination of cortical grafts and enrichment were attributable to secondary protection against thalamic atrophy, rather than primary cortical reconstruction.

    Article  CAS  PubMed  Google Scholar 

  52. Grabowski, M., Sorensen, J. C., Mattsson, B., Zimmer, J. & Johansson, B. B. Influence of an enriched environment and cortical grafting on functional outcome in brain infarcts of adult rats. Exp. Neurol. 133, 96–102 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Montoya, C. P., Astell, S. & Dunnett, S. B. Effects of nigral and striatal grafts on skilled forelimb use in the rat. Prog. Brain Res. 82, 459–466 (1990).

    Article  CAS  PubMed  Google Scholar 

  54. Christie, M. A. & Dalrymple-Alford, J. C. Behavioural consequences of frontal cortex grafts and enriched environments after sensorimotor cortex lesions. J. Neural Transplant. Plast. 5, 199–210 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Kesslak, J. P., Brown, L., Steichen, C. & Cotman, C. W. Adult and embryonic frontal cortex transplants after frontal cortex ablation enhance recovery on a reinforced alternation task. Exp. Neurol. 94, 615–626 (1986).

    Article  CAS  PubMed  Google Scholar 

  56. Jones, T. A., Hawrylak, N., Klintsova, A. Y. & Greenough, W. T. Brain damage, behavior, rehabilitation, recovery, and brain plasticity. Mental Retard. Dev. Disabil. Res. Rev. 4, 231–237 (1998).

    Article  Google Scholar 

  57. Rose, F. D., Davey, M. J., Love, S. & Dell, P. A. Environmental enrichment and recovery from contralateral sensory neglect in rats with large unilateral neocortical lesions. Behav. Brain Res. 24, 195–202 (1987).

    Article  CAS  PubMed  Google Scholar 

  58. Döbrössy, M. D., Le Moal, M., Monatron, M. F. & Abrous, D. N. Influence of the environment on the efficacy of intrastriatal dopaminergic grafts. Exp. Neurol. 164, 165–172 (2000).

    Google Scholar 

  59. Barker, R. A., Dunnett, S. B., Faissner, A. & Fawcett, J. W. The time course of loss of dopaminergic neurons and the gliotic reaction surrounding grafts of embryonic mesencephalon to the striatum. Exp. Neurol. 141, 79–93 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Greco, A. M., Gambardella, P., Sticchi, R., D' Aponte, D. & De Franciscis, P. Circadian rhythms of hypothalamic norepinephrine and of some circulating substances in individually housed adult rats. Physiol. Behav. 52, 1167–1172 (1992).

    Article  CAS  PubMed  Google Scholar 

  61. McEwen, B. S. & Sapolsky, R. M. Stress and cognitive function. Curr. Opin. Neurobiol. 5, 205–216 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. Ungerstedt, U. & Arbuthnott, G. W. Quantitative recording of rotational behaviour in rats after 6-hydroxydopamine lesions of the nigrostriatal dopamine system. Brain Res. 24, 485–493 (1970).

    Article  CAS  PubMed  Google Scholar 

  63. Robinson, T. E. Behavioral sensitization: characterization of enduring changes in rotational behavior produced by intermittent injections of amphetamine in male and female rats. Psychopharmacology (Berl.) 84, 466–475 (1984).

    Article  CAS  Google Scholar 

  64. Carey, R. J. Conditioned rotational behaviour in rats with unilateral 6-hydroxydopamine lesions of the substantia nigra. Brain Res. 365, 379–382 (1986).

    Article  CAS  PubMed  Google Scholar 

  65. Annett, L. E. et al. Conditioning versus priming of dopaminergic grafts by amphetamine. Exp. Brain Res. 93, 46–54 (1993).The results indicate that the history of drug treatments can influence the expression of rotational behaviours in grafted animals, involving both pharmacological sensitization and behavioural conditioning processes.

    Article  CAS  PubMed  Google Scholar 

  66. Björklund, A., Stenevi, U., Dunnett, S. B. & Iversen, S. D. Functional reactivation of the deafferented neostriatum by nigral transplants. Nature 289, 497–499 (1981).

    Article  PubMed  Google Scholar 

  67. Björklund, A. et al. Mechanisms of action of intracerebral neural implants — studies on nigral and striatal grafts to the lesioned striatum. Trends Neurosci. 10, 509–516 (1987).

    Article  Google Scholar 

  68. Klassen, H. & Lund, R. D. Retinal transplants can drive a pupillary reflex in host rat brains. Proc. Natl Acad. Sci. USA 84, 6958–6960 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Coffey, P. J., Lund, R. D. & Rawlins, J. N. P. Detecting the world through a retinal implant. Prog. Brain Res. 82, 269–275 (1990).

    Article  CAS  PubMed  Google Scholar 

  70. Coffey, P. J., Lund, R. D. & Rawlins, J. N. P. Retinal transplant-mediated learning in a conditioned suppression task in rats. Proc. Natl Acad. Sci. USA 86, 7248–7249 (1989).This paper describes a seminal experiment, showing that the graft can process primary information, and not only have a modulatory or trophic effect. More importantly, it also showed that specific training of the grafted animals improves their performance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gregory, R. L. Eye and Brain: the Psychology of Seeing (Oxford Univ. Press, Oxford, 1990).

    Google Scholar 

  72. Dunnett, S. B., Nathwani, F. & Björklund, A. The integration and function of striatal grafts. Prog. Brain Res. 127, 345–380 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Mishkin, M., Malamut, B. & Bachevalier, J. in Neurobiology of Learning and Memory (eds Lynch, G., McGaugh, J. L. & Weinberger, N. W.) 65–77 (Guilford, New York, 1984).

    Google Scholar 

  74. Jog, M. S., Kubota, Y., Connolly, C. I., Hillegaart, V. & Graybiel, A. M. Building neural representations of habits. Science 286, 1745–1749 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Carli, M., Evenden, J. L. & Robbins, T. W. Depletion of unilateral striatal dopamine impairs initiation of contralateral actions and not sensory attention. Nature 313, 679–682 (1985).

    Article  CAS  PubMed  Google Scholar 

  76. Mittleman, G., Brown, V. J. & Robbins, T. W. Intentional neglect following unilateral ibotenic acid lesions of the striatum. Neurosci. Res. Commun. 2, 1–8 (1988).

    Google Scholar 

  77. Brasted, P., Humby, T., Dunnett, S. B. & Robbins, T. W. Unilateral lesions of the dorsal striatum in rats disrupt responding in egocentric space. J. Neurosci. 17, 8919–8926 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mayer, E., Brown, V. J., Dunnett, S. B. & Robbins, T. W. Striatal graft-associated recovery of a lesion-induced performance deficit in the rat requires learning to use the transplant. Eur. J. Neurosci. 4, 119–126 (1992).The origin of the expression 'learning to use the graft'. The authors proposed that for functional recovery to occur, explicit retraining might be required to re-establish previously learned behaviours.

    Article  CAS  PubMed  Google Scholar 

  79. Brasted, P. J., Watts, C., Robbins, T. W. & Dunnett, S. B. Associative plasticity in striatal transplants. Proc. Natl Acad. Sci. USA 96, 10524–10529 (1999).A demonstration of the specificity of the 'learning to use the graft' effect in rats with striatal lesions and grafts. Recovery is dependent on relearning specific stimulus–response associations within the grafted hemisphere.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Brasted, P. J., Robbins, T. W. & Dunnett, S. B. Behavioral recovery after transplantation into a rat model of Huntington's disease requires both anatomical connectivity and extensive postoperative training. Behav. Neurosci. 111, 139–151 (2000).

    CAS  Google Scholar 

  81. Björklund, A., Campbell, K., Sirinathsinghji, D. J. S., Fricker, R. A. & Dunnett, S. B. in Functional Neural Transplantation (eds Dunnett, S. B. & Björklund, A.) 157–195 (Raven, New York, 1994).

    Google Scholar 

  82. Labandeira-Garcia, J. L., Tobio, J. P. & Guerra, M. J. Comparison between normal developing striatum and developing striatal grafts using drug-induced Fos expression and neuron-specific enolase immunohistochemistry. Neuroscience 60, 399–415 (1994).

    Article  CAS  PubMed  Google Scholar 

  83. Labandeira-Garcia, J. L. & Guerra, M. J. Cortical stimulation induces fos expression in intrastriatal striatal grafts. Brain Res. 652, 87–97 (1994).

    Article  CAS  PubMed  Google Scholar 

  84. Mandel, R. J., Wictorin, K., Cenci, M. A. & Björklund, A. Fos expression in intrastriatal striatal grafts: regulation by host dopaminergic afferents. Brain Res. 583, 207–215 (1992).

    Article  CAS  PubMed  Google Scholar 

  85. Rutherford, A., Garcia-Muñoz, M., Dunnett, S. B. & Arbuthnott, G. W. Electrophysiological demonstration of host cortical inputs to striatal grafts. Neurosci. Lett. 83, 275–281 (1987).

    Article  CAS  PubMed  Google Scholar 

  86. Xu, Z. C., Wilson, C. J. & Emson, P. C. Synaptic potentials evoked in spiny neurons in rat neostriatal grafts by cortical and thalamic stimulation. J. Neurophysiol. 65, 477–493 (1991).

    Article  CAS  PubMed  Google Scholar 

  87. Nakao, N., Nakai, K. & Itakura, T. Fetal striatal transplants reinstate the electrophysiological response of pallidal neurons to systemic apomorphine challenge in rats with excitotoxic striatal lesions. Eur. J. Neurosci. 12, 3426–3432 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Campbell, K. et al. Characterization of GABA release from intrastriatal striatal transplants: dependence on host-derived afferents. Neuroscience 53, 403–415 (1993).

    Article  CAS  PubMed  Google Scholar 

  89. Sirinathsinghji, D. J. S. et al. Striatal grafts in rats with unilateral neostriatal lesions. II. In vivo monitoring of GABA release in globus pallidus and substantia nigra. Neuroscience 24, 803–811 (1988).

    Article  CAS  PubMed  Google Scholar 

  90. Sirinathsinghji, D. J. S., Heavens, R. P., Torres, E. M. & Dunnett, S. B. Cholecystokinin-dependent regulation of host dopamine inputs to striatal grafts. Neuroscience 53, 651–663 (1993).

    Article  CAS  PubMed  Google Scholar 

  91. Marshall, J. F. The education of a brain transplant. Proc. Natl Acad. Sci. USA 96, 9976–9978 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Merzenich, M. Long-term change of mind. Science 282, 1062–1063 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Buonomano, D. V. & Merzenich, M. M. Cortical plasticity: from synapses to maps. Annu. Rev. Neurosci. 21, 149–186 (1998).

    Article  CAS  PubMed  Google Scholar 

  94. Florence, S. L., Taub, H. B. & Kaas, J. H. Large-scale sprouting of cortical connections after peripheral injury in adult macaque monkeys. Science 282, 1117–1121 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Jones, E. G. & Pons, T. P. Thalamic and brainstem contributions to large-scale plasticity of primate somatosensory cortex. Science 282, 1121–1125 (1998).

    Article  CAS  PubMed  Google Scholar 

  96. Schallert, T. & Jones, T. A. 'Exuberant' neuronal growth after brain damage in adult rats: the essential role of behavioral experience. J. Neural Transplant. Plast. 4, 193–198 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Schallert, T., Kozlowski, D. A., Humm, J. L. & Cocke, R. R. Use-dependent structural events in recovery of function. Adv. Neurol. 73, 229–238 (1997).

    CAS  PubMed  Google Scholar 

  98. Buzsaki, G., Wiesner, J., Henriksen, S. J. & Gage, F. H. Long-term potentiation of evoked and spontaneous neuronal activity in the grafted hippocampus. Exp. Brain Res. 76, 401–408 (1989).

    Article  CAS  PubMed  Google Scholar 

  99. Calabresi, P., Centonze, D., Gubellini, P., Marfia, G. A. & Bernardi, G. Glutamate-triggered events inducing corticostriatal long-term depression. J. Neurosci. 19, 6102–6110 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Centonze, D., Picconi, B., Gubellini, P., Bernardi, G. & Calabresi, P. Dopaminergic control of synaptic plasticity in the dorsal striatum. Eur. J. Neurosci. 13, 1071–1077 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Sirinathsinghji, D. J. S., Mayer, E., Stam, R., Fernandez, J. M. & Dunnett, S. B. The expression of GAP-43 mRNA in developing embryonic striatal tissue grafts. Neuroreport 4, 175–178 (1993).

    Article  CAS  PubMed  Google Scholar 

  102. Woolhead, C. L. et al. Differential effects of autologous peripheral nerve grafts to the corpus striatum of adult rats on the regeneration of axons of striatal and nigral neurons and on the expression of GAP-43 and the cell adhesion molecules N-CAM and L1. J. Comp. Neurol. 391, 259–273 (1998).

    Article  CAS  PubMed  Google Scholar 

  103. Zeng, J., Zhao, L. R., Nordborg, C., Mattsson, B. & Johansson, B. B. Are neuronal markers and neocortical graft–host interface influenced by housing conditions in rats with cortical infarct cavity? Brain Res. Bull. 48, 165–171 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Polgar, S. et al. Implications of neurological rehabilitation for advancing intracerebral transplantation. Brain Res. Bull. 44, 229–232 (1997).

    Article  CAS  PubMed  Google Scholar 

  105. Liepert, J. et al. Motor cortex plasticity during constraint-induced movement therapy in stroke patients. Neurosci. Lett. 250, 5–8 (1998).

    Article  CAS  PubMed  Google Scholar 

  106. Field-Fote, E. C. Combined use of body weight support, functional electric stimulation, and treadmill training to improve walking ability in individuals with chronic incomplete spinal cord injury. Arch. Phys. Med. Rehabil. 82, 818–824 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the recurrent funding of the UK Medical Research Council in support of our own studies in this area.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Màtè D. Döbrössy.

Related links

Related links

DATABASES

LocusLink

GAP43

NCAM

neurofilament light polypeptide

synaptophysin

OMIM

Huntington's disease

Parkinson's disease

FURTHER INFORMATION

Encyclopedia of Life Sciences

Huntington disease

Parkinson disease

Glossary

HEBB–WILLIAMS MAZE

An open field with moveable barriers that challenges the animal's learning and memory capabilities in locating a box from a given starting position.

OPERANT CONDITIONED SUPPRESSION

A classical conditioning paradigm in which a stimulus (e.g. light) that predicts an event (e.g. mild shock) interrupts a learned behaviour (e.g. lever pressing for food).

IMMEDIATE-EARLY GENES

Genes that are expressed as one of the earliest responses of cells to factors that initiate the transition between the quiescent and activated states.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Döbrössy, M., Dunnett, S. The influence of environment and experience on neural grafts. Nat Rev Neurosci 2, 871–879 (2001). https://doi.org/10.1038/35104055

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35104055

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing