Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Absolute-phase phenomena in photoionization with few-cycle laser pulses

Abstract

Currently, the shortest laser pulses1 that can be generated in the visible spectrum consist of fewer than two optical cycles (measured at the full-width at half-maximum of the pulse's envelope). The time variation of the electric field in such a pulse depends on the phase of the carrier frequency with respect to the envelope—the absolute phase. Because intense laser–matter interactions generally depend on the electric field of the pulse, the absolute phase is important for a number of nonlinear processes2,3,4,5,6,7,8. But clear evidence of absolute-phase effects has yet to be detected experimentally, largely because of the difficulty of stabilizing the absolute phase in powerful laser pulses. Here we use a technique that does not require phase stabilization to demonstrate experimentally the influence of the absolute phase of a short laser pulse on the emission of photoelectrons. Atoms are ionized by a short laser pulse, and the photoelectrons are recorded with two opposing detectors in a plane perpendicular to the laser beam. We detect an anticorrelation in the shot-to-shot analysis of the electron yield.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The time variation of the electric field of laser pulses consisting of very few optical cycles depends on the phase ϕ of the carrier frequency with respect to the pulse's envelope.
Figure 2: Experimental set-up.
Figure 3: Contingency map.

Similar content being viewed by others

References

  1. Nisoli, M. et al. Compression of high-energy laser pulses below 5fs. Opt. Lett. 22, 522–524 (1997).

    ADS  CAS  PubMed  Google Scholar 

  2. Brabec, T. & Krausz, F. Intense few-cycle laser fields: frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545–591 (2000).

    ADS  CAS  Google Scholar 

  3. Krausz, F. From femtochemistry to attophysics. Phys. World 14, 41–46 (2001).

    CAS  Google Scholar 

  4. Rabitz, H., de Vivie-Riedle, R., Motzkus, M. & Kompa, K. Whither the future of controlling quantum phenomena? Science 288, 824–828 (2000).

    ADS  CAS  PubMed  Google Scholar 

  5. Reichert, J. et al. Measuring the frequency of light with mode-locked lasers. Opt. Commun. 172, 59–68 (1999).

    ADS  CAS  Google Scholar 

  6. Jones, D. J. et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000).

    ADS  CAS  PubMed  Google Scholar 

  7. Apolonski, A. et al. Controlling the phase evolution of few-cycle light pulses. Phys. Rev. Lett. 85, 740–743 (2000).

    ADS  CAS  PubMed  Google Scholar 

  8. Drescher, M. et al. X-ray pulses approaching the attosecond frontier. Science 291, 1923–1927 (2001).

    ADS  CAS  PubMed  Google Scholar 

  9. Spielmann, Ch. et al. Generation of coherent X-rays in the water window using 5-femtosecond laser pulses. Science 278, 661–664 (1997).

    ADS  CAS  Google Scholar 

  10. Rundquist, A. et al. Phase-matched generation of coherent soft X-rays. Science 280, 1412–1415 (1998).

    ADS  CAS  PubMed  Google Scholar 

  11. Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).

    ADS  CAS  PubMed  Google Scholar 

  12. Nisoli, M., De Silvestri, S. & Svelto, O. Generation of high energy 10 fs pulses by a new pulse compression technique. Appl. Phys. Lett. 68, 2793–2795 (1996).

    ADS  CAS  Google Scholar 

  13. Telle, H. R. et al. Carrier-envelope offset phase control: A novel concept for absolute optical frequency and ultrashort pulse generation. Appl. Phys. B 69, 327–332 (1999).

    ADS  CAS  Google Scholar 

  14. Eckstein, J. N. High-resolution Spectroscopy using Multiple Coherent Interactions. Thesis, Stanford Univ. (1978).

    Google Scholar 

  15. Wineland, D. J., Bergquist, J. C., Itano, W. M., Diedrich, F. & Weimer, C. S. in The Hydrogen Atom (eds Bassani, G. F., Inguscio, M. & Hänsch, T. W.) 123–133 (Springer, Berlin, 1989).

    Google Scholar 

  16. Durfee, Ch. G. et al. Phase matching of high-order harmonics in hollow waveguides. Phys. Rev. Lett. 83, 2187–2190 (1999).

    ADS  CAS  Google Scholar 

  17. Agostini, P., Fabre, F., Mainfray, G., Petite, G. & Rahman, N. Free-free transitions following six-photon ionization of xenon atoms. Phys. Rev. Lett. 42, 1127–1130 (1979).

    ADS  CAS  Google Scholar 

  18. Cormier, E. & Lambropoulos, P. Effect of the initial phase of the field in ionization by ultrashort laser pulses. Euro. Phys. J. D 2, 15–20 (1998).

    ADS  CAS  Google Scholar 

  19. Dietrich, P., Krausz, F. & Corkum, P. B. Determining the absolute carrier phase of a few-cycle laser pulse. Opt. Lett. 25, 16–18 (2000).

    ADS  CAS  PubMed  Google Scholar 

  20. Christov, I. P. Phase-dependent ionization in the barrier suppression regime. J. Appl. Phys. B 70, 459–462 (2000).

    ADS  CAS  Google Scholar 

  21. de Bohan, A., Antoine, Ph., Milosevic, D. B. & Piraux, B. Phase-dependent harmonic emission with ultrashort laser pulses. Phys. Rev. Lett. 42, 1127–1130 (1979).

    Google Scholar 

  22. Potvliege, R. M., Kylstra, N. J. & Joachain, C. J. Photon emission by He+ in intense ultrashort laser pulses. J. Phys. B 33, L743–L748 (2000).

    ADS  CAS  Google Scholar 

  23. Press, W. P., Flannery, B. P., Teukolsky, S. A. & Vetterling, W. T. Numerical Recipes (Cambridge Univ. Press, Cambridge, 1986).

    MATH  Google Scholar 

Download references

Acknowledgements

We thank A. Kasper, H. Stehbeck and K. Witte for their collaboration in the early stage of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Paulus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paulus, G., Grasbon, F., Walther, H. et al. Absolute-phase phenomena in photoionization with few-cycle laser pulses. Nature 414, 182–184 (2001). https://doi.org/10.1038/35102520

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35102520

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing